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Résumé

La  caractéristique  la  plus  évidente  de  l’interface  terrestre  est  son  hétérogénéité.  Phénoménologiquement,
celle-ci, anthropique ou naturelle, transparaît de limites qui définissent les formes déployées dans l’espace
géographique. Ces limites sont certes dues à une dynamique temporelle, tout autant que à une dynamique
scalaire.  Celle-ci  se  manifeste  dans  les  rapports  possibles  et  changeant  existant  entre  échelles  dans  la
mesure  où  tout  échelle  ne  peut  se  concevoir  que  comme  relative  à  une  autre  servant  de  référence.  Ceci
conduit  à  la  relativité  d’échelle  (R.E.)  qui  devrait  permettre  de  définir  intrinsèquement  l’espace
géographique. Le premier objectif est de montrer la possibilité d’utiliser la R.E. en géographie. Au coeur de
la R.E., on trouve la géométrie fractale qui reste indispensable pour essayer  de comprendre l’organisation
scalaire du monde. Jusqu’à présent les fractales n’étaient utilisées que comme un outil de description plus
ou  moins  pertinent.  En  R.E.,  les  formes  fractales  deviennent  une  conséquence  d’un  espace  formel
intrinsèquement  irrégulier.  La  fractalité  peut  donc  être  une  voie  de  compréhension  du  monde  utilisant
l’espace  de  ses  échelles,  c’est-à-dire  de  ses  résolutions.  L’objectif  central  de  cette  étude  est  donc  de
construire une méthodologie fractale générale nécessaire à l’étude d’une morphologie quelconque à travers
divers  exemples  issus  de  la  géographie  physique,  de  la  géographie  urbaine,  de  la  géohistoire  et  de  la
géographie  du  peuplement.  L’objectif  final  est  d’aboutir  à  des  solutions  formelles  accessibles  à  une large
communauté  de  géographes,  ce  qui  n’est  pas  le  cas  de  la  théorie  de  la  R.E.  dans  son  formalisme  actuel.
D’un point de vue épistémologique, le développement en géographie de la R.E. pose la question de la re-
naturalisation  de  cette  discipline  des  Sciences  humaines  et  sociales  et  de  sa  constitution  en  science
analytique, donc plus largement de proposer une nouvelle définition de la géographie.

Mots  clés.  Épistémologie,  transition  fractal - non  fractal,  hydrographie,  morphologie  urbaine,  château,
monde
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Abstract

Formal characterization of geographic multi-scale structures in scale relativity
Examples in physical geography, urban geography, geohistory and geography of the settlement

The  most  obvious  characteristic  of  the  terrestrial  interface  is  its  heterogeneity.  Phenomenologically,  this
one,  human  or  natural,  show limits  that  define  the  forms  deployed  in  geographic  space.  These  limits  are
certainly due to temporal dynamic, all as much as a scale dynamic. This one is manifested in the possible
relationships and variables that exist between scales inasmuch as every scale can no conceive than relative
to  another  that  is  used  as  reference.  This  leads  to  the  scale  relativity  (SR)  which  should  allow  to  define
intrinsically the geographical space. The first objective is to show the possibility of using SR in geography.
At the heart of the SR, we found that fractal geometry is indispensable to try to understand the organization
in the scales of the world. So far fractals no were used than as a tool of describing more or less relevant. In
SR, the fractal forms become a consequence of a formal space intrinsically irregular. The fractality can be
thus a way of understanding of the world using the space of scales, that is to say its resolutions. The central
objective  of  this  study is  thus  to  build  a  general  fractal  methodology necessary under  investigation  of  an
unspecified  morphology  through  various  examples  resulting  from  the  physical  geography,  the  urban
geography,  the  geohistory and  the  geography of  the  settlement.  The final  objective  is  to  lead  to  solutions
formal accessible at a broad community from geographers, which is not the case of the theory of the R.E in
its  current  formalism.  From  an  epistemological  point  of  view,  the  development  in  geography  of  the  R.E
raises the question  of  the Re-naturalization  of  this  discipline  of  the human and social  sciences  and of  the
constitution in analytical science, therefore more largely to propose a new definition of the geography.

Keywords. Epistemology, transition fractal - non fractal, hydrography, urban morphology, castle, world
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1
Introduction générale

Pour certaines personnes, la géographie a comme principal objet d’étude l’interface terrestre dont la
caractéristique la plus évidente est  d’être hétérogène.  Phénoménologiquement,  cette hétérogénéité,  qu’elle
soit  d’origine  anthropique  ou  naturelle,  transparaît  à  travers  des  limites  qui  définissent  des  formes
déployées dans l’espace terrestre.

Par  ailleurs,  de  plus  en  plus,  cet  espace  terrestre  peut  être  considéré  comme  un  monde  « plein »,
surtout  en  zone  urbaine.  L’une  des  conséquences  en  est  que  les  possibilités  d’expansion  spatiale  stricto

sensu  - déplacement  des frontières,  conquête,  changement  d’attribut  de lieux,  etc. -  deviennent  de  plus en
plus difficile. Cela étant, nature et théories permettent d’identifier un autre « front » dont le rôle apparaît de
plus en plus essentiel,  mais dont la prise en compte est  toujours insuffisante, surtout en géographie. Cette
dimension  du  monde,  après  celle  de  l’espace  strico  sensu  (longueur,  largeur,  hauteur,  ou  en  géographie,
longitude,  latitude,  altitude)  et  celle  du  temps,  correspond  aux  échelles  (Nottale,  1993 ;  Nottale,  1998) ;
celles-ci n’étant pas uniquement conçues comme une simple facteur de réduction pour une représentation,
mais comme une jauge définissant, en partie, l’information qui peut être obtenue. Dès lors, il est possible de
penser  théoriser  la  façon  dont  cette  information  varie  continûment  en  fonction  des  échelles.  C’est  tout
l’objet  de  la  géométrie  fractale  (Mandelbrot,  1967 ;  1975 ;  1977 ;  1982 ;  Nottale  et  Schneider,  1984 ;
Nottale, 1989 ; 1992 ; 1993 ; 1998). Dans ce cadre, la physique possède une gamme d’échelles très étendue
qui va de l’infiniment petit à l’infiniment grand. De ce fait, si l’on compare la géographie à la physique, il
apparaît que la géographie possède des objets d’étude qui se placent scalairement en position médiane dans
ce continuum des échelles de l’univers, et  qu’il  appartient à notre discipline de formaliser  la structuration
scalaire du monde autour des échelles anthropiques (10-4  et 108), et de contribuer ainsi à la définition d’une
cosmologie universelle tout en se référant à une base scientifique déductive construite à partir de principes
très généraux comme celui de la relativité (Nottale, 1998). Pour autant, cela ne signifie pas que la géogra-
phie va se transformer en une « physique géographique ». En effet, la géographie, charnière entre l’Homme
et  la  Nature,  peut  s’ouvrir  à  ce  mode  de  pensée  afin  de  permettre  la  construction  d’une  véritable  théorie
géographique.  De  ce  fait,  cette  thèse  espère  être  un  jalon  dans  cette  dynamique  qui  s’enracine  tant  dans
l’approche multi-scalaire des géographes que dans la possibilité conservée de raisonner tant sur des objets
naturels  qu’anthropiques.  Se  pose  alors  la  question  de  la  base  commune  pour  construire  une  théorie
générale  de  la  géographie  qui  permettrait  de  dépasser  la  distinction  traditionnelle  entre  la  géographie
physique  et  la  géographie  humaine.  Cette  thèse  proposera  de  multiples  exemples  qui  seront  issus  de  la
géographie  physique  ainsi  que  de  la  géographie  humaine,  et  qui  constitueront  autant  de  briques  pour  une
discussion à venir plus large sur ces questions. Tout ceci implique que cette dimension d’échelle (c’est-à-
dire une organisation  dans l’ordre des  échelles de nature fractale)  soit  mieux comprise  et  utilisée puisque
cela devient l’une des principales dimensions du développement des sociétés.
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L’état  de  l’art  sur  la  question  des  échelles  en  géographie  humaine  et  physique  a  été,  en  partie,
réalisé à l’occasion d’une question récente proposée à l’agrégation « Echelle et  temporalité » (2004-2006)
(Baudelle et Regnauld, 2004 ; Volvey, 2005). La question apparaît donc d’une grande actualité. Par exem-
ple,  les  agglomérations  urbaines  rivalisent  d’imagination  pour  faire  entrer  un  maximum  d’activités  et  de
personnes  dans  des  surfaces  au  sol  aussi  petites  que  possibles  (gratte-ciel,  immeubles  de  grande  hauteur,
ville  souterraine,  etc.).  Ceci  est  une  condition  d’une  maximisation  des  interactions,  des  relations,  des
métissages,  condition  de  l’innovation  et  de  la  ville  compacte  que  la  crise  énergétique  actuelle  et  à  venir
(peak oil) remet sur le devant de la scène dans la mesure où l’étalement urbain est extrêmement coûteux en
termes de temps, de matériaux et d’énergie. En d’autres termes, développer une ville dont l’étalement serait
limité revient à rechercher une optimisation scalaire, sans abandonner un objectif de qualité de vie, ni une
recherche d’intensification de l’usage de la matière grise.

Les formes fractales sont  déjà importantes par  l’irrégularité  ou la lacunarité  qu’elles  permettent  et
manifestent, et le sont encore plus par le fait qu’elles sont l’unique moyen de remplir davantage un espace,
tout en organisant un stockage de matière, mais surtout d’informations et de lignes, de surfaces, de volumes
maximisant  les  lieux  d’échange,  conçus  comme  des  « points  structurés ».  Cette  solution  est  amplement
employée par la nature - par exemple, la surface de nos poumons avoisine les 400 m² - ce qui fournit autant
de cas à partir desquels il est possible de développer un formalisme physico-mathématique qui modélise cet
ordre scalaire. Cela étant, cette maximisation des morphologies d’échange n’a de sens que si l’on considère
que toutes activités rencontrent une limite qui est fixée par la vitesse des réactions, du transfert matériel de
tel ou tel élément, du temps nécessaire pour associer ceci ou cela, etc. En d’autres termes, la fractalité des
morphologies d’échanges naturelles montre que les cinétiques des réactions chimiques, en particulier, sont
trop lentes par rapport aux débits des flux. Analogiquement, on peut penser qu’il en est de même pour les
dynamiques anthropiques, et qu’à côté d’une optimisation par accélération des vitesses (mais l’information
financière circule aujourd’hui à la vitesse limite de la lumière), il existe une optimisation par les échelles en
établissant  des  rapports  scalaires  spécifiques  généralement  déployées  dans  l’espace  ou  localement  situés.
Ceux-ci  ouvrent  sur  la  question  de  la  variation  des  rapports  scalaires  dans  l’espace  dont  on  peut  penser
hypothétiquement  qu’elle  est  porteuse  de  limites  ou  d’autres  discontinuités  phénoménologiquement
perceptibles.

Pour  suivre  cette  voie,  le  géographe  doit  se  donner  les  moyens  de  construire  des  outils  d’une
approche fractale  c’est-à-dire  d’une approche qui  considère  la  façon  de  passer  d’une échelle  à  l’autre  par
une  loi  spécifique.  Dans  cette  perspective,  il  apparaît  que  les  dynamiques  observées  dans  l’espace  géo-
graphique peuvent correspondre tout à la fois à une causalité fonctionnelle (Figure 1. A) (flux circulant et
apport  ou  exportation  de  matière  par  exemple),  à  une  causalité  formelle  (Figure  1. B)  (la  configuration
existante joue un rôle dans les modalités de circulation des flux) et à une causalité structurelle (Figure 1. C)
nécessaire, par exemple, pour penser tant les processus sans sujet (Martin, 2004) que la récurrence d’arché-
types morphologiques sur différents substrats.

Cela  conduit  à  faire  l’hypothèse  que  les  répartitions  observées  dans  l’espace  terrestre  ne  relèvent
pas  de  dynamiques  aléatoires,  dans  le  sens  où  il  n’existerait  pas  de  lois,  mais  des  processus  dont  les
dynamiques seraient connues, ne serait-ce qu’à travers des lois de probabilité, et dont les morphologies, et
plus  largement  les  structures  spatiales,  seraient  les  résultantes.  Déployées  dans  l’ordre  des  échelles,  ces
morphologies doivent résulter à la fois « d’effets d’échelle », ou de « force d’échelle » qui traduisent l’arbi-
trage naturel ou anthropique de « conflits d’échelle » et de « dynamiques d’échelle » (Nottale, 1998). Ceci
appelle un processus de théorisation (Figure 1. D) fondé sur les échelles elles-mêmes.
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Ceci  amène  à  insister  sur  une  précision  fondamentale.  La  géographie,  comme  dans  d’autres  sci-
ences par  ailleurs, s’est  toujours inscrite dans une approche qui étudie le mouvement, c’est-à-dire la caté-
gorie possédant pour variables d’état celles de l’espace et celle du temps. Partant de ce constant, la théorie
de la relativité d’échelle montre que la catégorie « mouvement » n’est pas unique, et qu’à côté d’elle existe
une catégorie propre à l’échelle (Nottale, 1998). Cependant, la géographie possède une approche spécifique
des  échelles,  dans  le  sens  où  il  existe  une  véritable  pensée  sur  et  de  l’échelle,  ce  qui  n’est  pas  le  cas  de
nombreuses disciplines dans lesquelles l’échelle n’est qu’une résolution. Cette thèse s’efforcera de montrer
que  la  transformation  de  la  notion  d’échelle  en  une  catégorie  propre,  indépendante  du  mouvement,  est
porteuse, en géographie, de conséquences qui permettent d’ouvrir la porte d’un champ de recherche beau-
coup plus large que celui développé à l’occasion de la question de l’agrégation citée précédemment.

Figure 1. Espace géographique et causalités

Le premier type de causalité (A) renvoie à des études de variables marqueurs du fonctionnement. Le second (B) à la prise en compte du rôle de filtre
que jouent les configurations existantes. Le troisième à une démarche théorique (D) qui doit in fine modéliser la composante structurelle (C), la règle
contrôlant en quelque sorte l’apparaître morphologique.

Cette thèse s’articulera autour de trois objectifs.
† Objectif 1. Montrer le lien entre l’étude des formes géographiques et la relativité d’échelle.
† Objectif 2.  Définir  un  cadre  multi-scalaire  théorique  général  en  géographie  capable

d’expliciter  les  morphologies  de  l’espace  géographique,  et  plus  largement  les  structures
scalaires existant en géographie.
† Objectif 3.  Articuler  le  temps et  l’espace et  leurs échelles respectives  dans une démarche

géographique.
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1.1. Objectif 1. Un lien entre la morphologie et la relativité d'échelle

En  partant  de  l’observation  et  de  la  quantification  des  morphologies  naturelles  (reliefs  principale-
ment) par des méthodes connues, au moins, depuis Henri Baulig (1959), comment est-il possible d’aboutir
à  une  modélisation  formelle  des  conditions  théoriques  de  leur  déploiement ?  La  géomorphologie  sera
entendue  dans  cette  thèse  comme  un  domaine  expérimental  très  large  qui  désignera  toute  analyse  mor-
phologique  en  géographie.  En  géographie  humaine,  les  actions  anthropiques  comptent  peu,  sorties  de  la
petite échelle et sur le temps long. Cela évite d’avoir à traiter immédiatement les questions du choix, de la
volonté, de la liberté, etc. que ne manqueront pas de se poser pour les morphologies d’origine anthropique.

1.1.1. Mesure de caractéristiques morphologiques

L’expérience montre qu’il  est  très difficile  d’arriver à modéliser  les morphologies produites par la
circulation des flux, tant en géographie physique qu’en géographie humaine. Cette approche se heurte à la
question  de  la  multiplicité  des  variables  et  à  celle  de  la  multiplicité  de  leurs  combinaisons.  Si  cela  était
possible, cela signifierait, d’une part que le problème des processus sans sujet soit résolu - ce qui n’est pas
le  cas -  et  d’autre  part,  que  la  connaissance  des  règles  structurelles  de  combinaison  de  ces  variables  soit
connues (ce qui n’est pas le cas également).

Dans  cette  perspective,  des  outils  spécifiques  comme  la  géométrie  fractale,  doivent  être  mis  en
œuvre.  Il  s’agit  dès  lors,  dans  un  premier  temps,  de  mesurer  les  caractéristiques  fractales  d’objets  inclus
dans un espace qui sera considéré comme euclidien. Pour ce faire et afin d’avoir une statistique des carac-
téristiques d’échelle, la mise au point d’outils automatisant cette tache a été une clé dans cette étude, dans
la mesure où les outils disponibles, qu’ils soient payant ou gratuit, ne sont pas totalement satisfaisants, tant
au plan des solutions formelles adoptées que vis-à-vis de la chaîne des traitements à mettre en œuvre qui ne
dépasse pas sa complexité et  son ampleur les capacités propres de ces outils.  Un apprentissage au logiciel
Mathematica©Wolfram a été nécessaire. La totalité des calculs est des résultats obtenus, du simple tableau
aux cartes, a été réalisée grâce à ce logiciel. On peut envisager l’écriture de très nombreuses pages de calcul
dont  une  transcription  et  une  intégration  dans  une  plateforme  plus  ergotique  du  type  système  d’informa-
tions  géographiques  peut  être  envisagée.  Ceci  correspond  à  l’arrière-plan  de  cette  thèse  qui  est  déposée  à
l’Université d’Avignon - UMR ESPACE, ainsi que les données utilisées permettant leur vérification.

1.1.2. Place de la thèse dans les théories de la morphogenèse

Si  la  morphogenèse  est  une  question  ancienne,  « la  création  de  nouvelles  formes  est  devenue  un
sujet de recherche dans de nombreuses disciplines […] » (Dauphiné, 2003, p. 149). La généralisation de cet
intérêt  souligne  le  caractère  aujourd’hui  primordial  de  ce  questionnement  qui  s’appuie  sur  les  travaux
précurseurs de René Thom (1974 ; 1983 ; 1991 ; 1993) dont la profondeur peut être illustrée par la Figure 2.

Figure 2. Espace de configuration et espace de contrôle
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Classiquement,  la  morphogenèse  correspond  à  trois  situations  bien  différentes  (Figure  3).  Il  s’agit
d’une  part  de  la  question  de  la  conservation  d’une  forme,  d’autre  part  de  celle  de  la  modification  d’une
forme, et  enfin de celle de l’émergence des morphologies à partir  d’une absence de configuration spatiale
prédisposant  à  cette  émergence.  Toutefois,  « si  l’émergence existe  dans  toutes  les  sciences,  le  géographie
focalise  plutôt  son  attention  sur  l’émergence des  formes  spatiales » (Dauphiné,  2003,  p. 150).  En  géogra-
phie, l’espace de configuration correspond à l’espace support : celui des localisations (lieux). Il s’agit d’un
état à partir duquel on devrait être capable de construire l’espace de contrôle qui est une description mathé-
matique « simplifiée » de l’espace de configuration et de sa dynamique potentielle.

Figure 3. Typologie des morphogenèses

Le type 1 correspond à une conservation de la masse et à un changement de forme, ce qui conduit à une variation de la surface d’échange. Le bilan
de masse est nul, car les apports compensent les départs, donc la surface globale reste constante, malgré le changement d’échelle. Elle correspondrait
à un moulage, par exemple.
Le type 2 correspond à une conservation de la forme et à un changement de masse. La surface d’échange varie. Le bilan de masse est négatif. Il y a
donc un changement d’échelle. La solution inverse est envisageable ; elle correspondrait à un ballon que l’on gonfle, par exemple.
Le  type  3  correspond  à  un  double  changement  de  forme  et  de  masse.  La  surface  d’échange  varie  fortement :  dans  un  cas  (à  gauche),  il  y  a  une
« contraction scalaire », dans l’autre (à droite), un « déploiement scalaire ».

Une méthode  devenue  classique  en  analyse  spatiale  consiste  à  essayer  de  caractériser  ces  espaces
(attracteurs) parfois à différentes dates, sans toujours chercher à comprendre le rôle de l’espace de contrôle
dans  la  cristallisation  de  l’espace  de  configuration.  Si  l’on  prend  l’exemple  pédagogique  de  la  ville,  les
travaux menés jusqu’à présent correspondent essentiellement à une approche purement descriptive, notam-
ment par les fractales dont l’objectif final annoncé ou sous-jacent est de caractériser cet espace de contrôle.
Dans  certains  cas,  les  auteurs  réalisent  une  description  de  l’évolution  temporelle  de  la  dimension  fractale
(Frankhauser, 1994 ; Tannier et Pumain, 2005). Ces travaux permettent parfois de caractériser des bifurca-
tions, mais après coup. En conséquence, la fractalité avérée n’est généralement pas utilisée dans la modélisa-
tion du comportement actuel ou futur du système urbain. L’introduction de la relativité d’échelle en géogra-
phie urbaine,  et  plus largement  en géographie physique et  humaine,  permettrait,  du moins en principe,  de
développer  de telles  modélisations dynamiques,  ce qui  devrait  permettre éventuellement  de se positionner
en amont  de la  bifurcation,  et  ainsi  pouvoir  agir  à  notre convenance sur  la  direction prise par  le  système.
C’est tout le programme de recherche des théories du chaos (Gleick, 1991).
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Actuellement,  ce  type  de  réflexion  est  dominé par  les  automates  cellulaires  et  les  systèmes  multi-
agents (White, 1998 ; White et Engelen, 1993 ; White et Engelen, 1997). C’est ce que Jean Petitot appelle
« l’approche computationnelle » qui est pour lui « la seule façon pour [les] sciences [n’ayant pas la possibil-
ité de recréer leur objet d’étude en laboratoire] d’accéder à une méthode expérimentale authentique permet-
tant  de tester  les  modèles » (Petitot,  1998).  Toutefois,  même si  cette  méthode est  essentielle  et  fournit  de
bons  résultats,  il  n’en  demeure  pas  moins  qu’elle  ne  permet  pas  de  comprendre  les  raisons  profondes  de
l’émergence des formes. De plus, ces approches sont locales au sens où elles ne sont guère généralisables
- ce qui ne veut pas dire qu’elle ne soient pas applicables dans différents cas - dans la mesure où rien, ou
presque, ne légitime scientifiquement (principes, lois, concepts) leurs fondements. En conséquence, elles ne
débouchent pas sur des lois et offrent des extrapolations spatiales ou temporelles auxquelles il  n’est guère
possible d’estimer le niveau de véracité. C’est tout l’inverse avec une construction théorique basée sur des
principes fondamentaux. Celle-ci peut conduire à des lois de portée universelle. C’est l’un des intérêts de la
théorie de la relativité d’échelle.

Cela  étant,  comme,  d’une  part,  « le  monde  du  géographe  est  avant  tout  un  ensemble  de  formes
créées par  d’innombrables processus physiques et  par  l’action des hommes » (Dauphiné, 2003,  p. 148),  et
comme,  d’autre  part,  « la  nature  est  un  immense  réserve  de  formes  fractales »  (Dauphiné,  2003,  p. 179),
d’un point de vue purement conceptuel, on peut espérer que l’approche par la relativité d’échelle permettra
de rendre compte de certaines caractéristiques essentielles de ces morphologies comme leurs limites, leurs
tailles, leurs rapports réciproques, donc de définir des concepts efficients et  objectifs pour chacune de ces
caractéristiques  qui  renvoie  à  l’idée de  discontinuité  (Brunet,  1968),  c’est-à-dire  celle d’hétérogénéité,  ou
de différenciation.

1.2. Objectif 2. Un cadre multi-scalaire théorique général en géographie

Depuis  Yves  Lacoste  (1976),  la  démarche  multi-scalaire  fait  l’originalité  de  la  géographie.  La
paternité du raisonnement multi-scalaire peut  être débattu, car la  période de l’immédiat  après-guerre avait
vu naître beaucoup de réfléxions sur l’idée d’échelle, mais c’est bien Yves Lacoste qui a le mieux formalisé
cette notion en géographie (Verdier, 2004). Diverses études en analyse spatiale (Piron, 1990 ; Piron, 1993,
par  exemple)  ont  pourtant  montré  la  grande  difficulté  de  quantifier  et  d’articuler  numériquement  les  dif-
férentes  échelles  en  géographie.  Cette  thèse  essaye  de  montrer  les  liens  plus  ou  moins  complexes  entre
l’étude  multi-scalaire  en  géographie  et  la  relativité  d’échelle  de  l’astrophysicien  Laurent  Nottale  (1993 ;
1998 ;  2010).  En  effet,  ces  deux  approches  fonctionnent  en  suivant  une  philosophie  et  une  analyse  com-
mune du monde.

Cette articulation peut se faire, en partie, en passant par le concept de forme. Toute forme pour être
définie possède une limite qui contribue à sa clôture logique (cohérence interne) et à sa définition en exten-
sion (frontière avec ce qui est autre), mais cette limite n’est visible qu’à une certaine échelle. Ainsi, l’étab-
lissement d’une relation entre l’existence d’une forme et l’échelle à laquelle on peut percevoir cette forme
transparaît. C’est très clair dans la traduction cartographique des formes : à trop petite échelle, la forme ne
peut  être  signifiée ;  à  trop  grande  échelle,  elle  déborbe  du  cadre  de  la  carte.  Dans  un  cas  comme  dans
l’autre,  cela  conduit  « automatiquement »  à  modifier  la  problématique  géographique  et  à  l’adapter  à
l’échelle de la carte, donc à la taille de la forme.
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La  notion  de  limite  en  géographie,  tant  humaine  que  physique,  est  consubstantielle  à  notre  disci-
pline dans la mesure où il n’y a pas de géographie possible dans un espace homogène. C’est pourtant dans
le cadre d’un espace homogène que Roger Brunet  construisit  la table des vingt-huit  chorèmes. Cela étant,
cette notion en géographie demeure encore très empirique, car elle n’a été abordée qu’à travers une percep-
tion  (approche phénoménologique)  et  des  mesures  qui  lui  sont  propres  (caractérisation  fractale  par  exem-
ple),  ou  qui  l’instrumentent  dans  des  travaux  sur  des  aires  (ensemble  de  lieux  dotés  d’attributs  divers)
qu’elle enclôt (zone urbaine, forêt, etc.). C’est toute la question du découpage de l’espace par le géographe
qui  est  appelé  parfois  par  le  politique  à  fixer  des  limites  générales  et  indispensables  à  l’application  d’un
droit, d’une mesure, etc. C’est donc une des démarches fondamentales de territorialisation, d’appropriation
dans tous les sens du terme (contrôle physique, matériel, imaginaire, juridique, etc.) d’un territoire. Moultes
exemples historiques témoignent de cela tant lors des phases de conquête (colonisation sud et nord améri-
caines, africaine, etc.) qu’à l’issue de conflits (cf. les traités de Versaille, du Trianon, etc.). Plus prosaïque-
ment,  une ZEP, une ZNIEF, un PLU, par  exemple,  nécessitent  une limite.  Ce fut  peut-être un des grands
intérêts de la géographie régionale que de se poser cette question en évitant d’y répondre par des évidences.
Quelle  est  la  limite  de  la  région  lyonnaise ?  Quelle  est  celle  du  territoire  méditerranéen  de  la  France ?
Quelle  est  celle  de  la  latinité ?  En  d’autres  termes,  on  peut  déplorer  que  peu  de  choses,  en  dehors  des
intensions  et  des  fragiles  éléments  indiqués  ci-dessus,  ne  vient  étayer  conceptuellement  et  théoriquement
cette notion, pourtant centrale de la géographie, ce qui explique d’ailleurs, tant le flou de ce concept large-
ment prospectif que l’importance numérique du vocabulaire qui essaye d’en faire le tour : limite, discontinu-
ité, front, marge, frontière, etc. Cela même si l’on peut donner ou trouver des définitions à tous ces termes.
Généralement,  chacune  donne  une  explication  de  ces  dénominations  sans  que  leurs  causalités  fondamen-
tales (structurelles) ne soient abordées. Comment expliquer que le monde ne soit pas homogène autrement
qu’en  le constatant,  et  en  remarquant  que s’il  n’en  était  pas ainsi,  on ne  serait  pas.  La  limite  est  donc un
attribut de la vie et de la conscience.

En conséquence, le choix de telle ou telle limite reste largement arbitraire, c’est-à-dire qu’il dépend
fortement  de l’individu ou du groupe d’individus qui la  perçoivent,  et  qui ont  eu à la  tracer  (cf.  les  prob-
lèmes de frontière). Reste donc entière la question de l’explication de l’émergence des limites dont l’ubiq-
uité tant pour des objets naturels qu’anthropiques conduit à faire l’hypothèse qu’elle renvoie à des mécan-
ismes  généraux,  aussi  bien  pour  des  morphologies  naturelles  que  pour  des  formes  anthropiques.  Par
ailleurs, lorsque l’on étudie cette limite en tant que telle, on s’aperçoit que la géométrie adaptée à sa descrip-
tion est souvent une géométrie particulière (dans le sens où elle est peu employée) qui est celle des objets
irréguliers ou lacunaires. Cette géométrie que Benoît Mandelbrot a qualifiée de « fractale », met en exergue
des caractéristiques spatiales difficilement accessibles par la simple perception visuelle, voire auditive. Par
ailleurs, la complexité vernaculaire du monde ne se comprendrait pas sans des entités plus ou moins spéci-
fiques et spécialisées. Toutefois, celles-ci ne peuvent exister sans être délimitées, donc l’explication d’une
forme de la complexité du monde, c’est-à-dire de l’espace géographique, passe par l’explication générique
des limites.

À  un  certain  niveau  de  généralisation  et  d’abstraction,  le  propre  de  la  géométrie  fractale  est  d’é-
tudier  les  relations  entre  la  morphogenèse  (l’apparition  d’une  limite,  donc  d’une  forme  qui  s’isole  d’un
fond)  et  le  concept  d’échelle  qui,  dans  une  première  approche,  peut  être  mis  en  œuvre  à  travers  celui
d’échelles géographiques conçues comme étant à la fois un rapport homothétique (1 / 25 000 par exemple)
et une assimilation implicite du numérateur à la taille de l’homme (Volvey, 2005), ce qui fait que peut être
établi  une  correspondance  entre  la  taille  d’un  objet,  ou  d’une  entité,  et  l’échelle  qui  permet  de  le  ou  la
représenter  dans un document  à l’échelle humaine,  à l’échelle du mètre carré essentiellement  (cf.  la  taille
des cartes).
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Cette  approche géographique  contient  donc  implicitement  l’idée  de  découpage,  de  délimitation  ce
qui conduit le géographe à procéder à de tels découpages ou délimitations (l’exemple le plus emblématique
est  peut-être  celui  de  l’établissement  d’une  frontière)  en  s’appuyant  sur  des  limites  visibles  (crête,  cours
d’eau,  littoral,  etc.)  ou  construites  (limite  de  l’aire  de  vie  d’une  population  parlant  majoritairement  la
langue x, « bordure » d’une ville, etc.). Cela étant, même si ces limites sont identifiées ou identifiables, rien
n’est dit, dans cette démarche, sur les raisons fondamentales de leur existence. D’où émergent-elles ?

En  effet,  la  limite  peut  être  abordée  théoriquement  en  se questionnant  sur  l’échelle à  laquelle elle
apparaît,  pour  une  entité,  et  à  laquelle  elle  disparaît  pour  cette  même  entité  -  ce  qui  définit  la  gamme
d’échelles de l’entité - dans un cadre théorique fractal. Autrement dit, il est possible de postuler qu’il existe
un lien modélisable entre la limite que pose le géographe, et  la gamme d’échelles en œuvre dans l’entité :
entre cette gamme et l’échelle de perception d’une entité.

Roger Brunet (1968) s’est penché précocement sur cette question bien avant qu’elle ne fasse retour
autour  d’une  thématique  proposée  à  l’agrégation  de  géographie  au  tournant  du  siècle  (cf.  les  travaux  sur
« échelle  et  temporalité  en  géographie »).  Il  avait  alors  identifié  trois  grandes  catégories  de  limites  en
géographie : le point, la ligne, la surface. Aujourd’hui, on pourrait ajouter les volumes à cette liste, ce qui
ne  la  dénaturerait  pas  dans  la  mesure  où,  de  toute  évidence,  elle  correspond  à  des  archétypes  euclidiens
comme le cercle,  le  carré,  etc.  Toutefois,  historiquement,  c’est  au même moment,  ou presque,  que Benoît
Mandelbrot  (1967)  fit  cette  remarque  pleine  de  bon  sens  qui  change  tout :  « les  nuages  ne  sont  pas  des
sphères, les montagnes ne sont pas des cônes, l’aboiement d’un chien n’est pas régulier et la lumière ne se
propage pas en ligne droite ».

Au-delà du truisme, et  peut-être parce que c’est un truisme, cette remarque ouvre des perspectives
extraordinaires.  Là  où  Euclide,  et  bon  nombre  de  mathématiciens  prestigieux  avaient  considéré  que  le
problème  essentiel,  car  premier  à  être  abordé,  était  celui  des  courbes  lisses  (les  coniques  par  exemple)
Benoît  Mandelbrot  affirme,  lui,  que  la  question  fondamentale  est  celle  des  courbes  non  dérivables,  des
courbes  ou  des  surfaces  phénoménologiquement  irrégulières,  les  formes  euclidiennes  devenant  l’une  des
limites  de  cette  irrégularité  lorsque  la  dimension  tend  vers  0,  1,  2,  3  pour  des  objets  dont  la  dimension
topologique  est  successivement  0,  1,  2,  3.  L’autre  limite  étant  celle  de  l’irrégularité  « totale »  lorsqu’une
entité de dimension topologique 0 tend vers 1, celle de dimension topologique 1 tend vers 2, etc.

On  voit,  dès  lors,  comment  la  posture  historiquement  datée  de  Roger  Brunet  doit  nécessairement
être dépassée, et cela, même si, comme il l’a affirmé à juste titre, toute discontinuité est une manifestation
fondamentale  de  l’organisation  de  l’espace  géographique  dont  la  compréhension  constitue  le  préalable
fondamental à la construction d’une géographie scientifique. C’est ce qu’essaye de construire cette thèse.

Considérer  la  limite  à  partir  d’archétypes  particuliers  de  la  géométrie  euclidienne  qui  renvoient  à
une  action  de  perception,  ne  semble  pas  être  la  bonne  voie  si  l’on  souhaite  développer  une  approche
théorique  dans  la  mesure  où  rien  ne  fonde  cette  limite  « choisie »  en  dehors  d’une  approche
phénoménologique, ou alors il faut naturaliser la phénoménologie, c’est-à-dire faire découler la perception
de l’émergence, en particulier, de mécanismes naturels qui, eux-mêmes s’appuieraient sur la manifestation
biophysicochimique de l’émergence.

La cohérence fonctionnelle des entités renvoie à une gamme d’échelles finie à l’intérieur de laque-
lle  le  rapport  entre  les  échelles  peut  être  invariant  ou  covariant  (cf.  Objectif  3).  Cette  gamme  se  traduit
spatialement  (dans  l’espace  tangible)  par  la  manifestation  de  la  fractalité  dans  l’ordre  des  échelles
(irrégularité, lacunarité) dans les limites de cette gamme et par la cristallisation de limites dites de coupures
aux grandes et aux petites échelles.
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Si l’on prend l’exemple d’un arbre qui n’est pas en tant que tel un objet géographique, mais qui est
un bon support didactique, il est clair qu’il exhibe une morphologie fractale (à sa limite) où il se structure
en  échelles  selon  un  mode  hiérarchique  particulier.  Pourtant,  chacun  sait  d’une  part  que  les  arbres  « ne
montent pas au ciel » comme disent les boursiers, et que, d’autre part, il est constitué de cellules végétales.
Existent donc tant au niveau de l’enveloppe de chaque cellule (qui n’est pas un objet fractal) qu’au niveau
de  la  frondaison,  des  échelles  de  coupure  qui  sont  porteuses  de  limites  phénoménologiquement  percepti-
bles. Il semble en être de même pour bon nombre d’objets dont certains sont géographiques (dont certains
entrent dans le projet du géographe) et d’autres non.

Toutefois, parmi les objets géographiques, il faut formuler une remarque qui nuance et complique la
question.  Lors  de  certaines  phases  historiques  des  villes  que  l’on  perçoit  comme  presque  stables  alors
qu’elles sont en phase de croissance ou de développement, des limites à petite échelle ont été évidemment
présentes,  sans  quoi  l’entité  n’aurait  pas  la  cohérence  et  la  clôture  qui  lui  permettent  d’exister,  qui  sont
mobiles dans l’espace tangible (interface terrestre), et qui constituent un front (parfois une marge) dont on
peut penser qu’il se déplace à la suite de l’intégration d’échelles plus petites ; c’est-à-dire par accroissement
de  la  gamme  d’échelles  qui  constitue  l’entité,  et  pas  fondamentalement,  à  la  suite  d’un  fonctionnement
classiquement décrit (flux de matière et d’énergie, voire d’information). Ce développement dans l’ordre des
échelles correspondant ainsi à une complexification théorique qui autorise une évolution de l’entité vers un
état plus complexe. Cependant, cette complexité scalaire est  ici  structurellement déterminée, et  non pas la
conséquence d’un fonctionnement dont rien ne permet de modéliser le sens dans l’espace. Pourquoi y a-t-il
concentration et non dispersion à l’échelle d’une ville ? Pourquoi y a-t-il dispersion et non concentration à
l’échelle d’un réseau urbain ? Autrement dit, les raisons, par exemple, de productivités liées à la proximité,
valides  à  l’échelle  de  la  ville  ne  le  seraient  plus  à  l’échelle  du  réseau.  De  plus,  la  validité  de  ces  raisons
serait  contrainte  par  la  taille  de  l’entité.  Ainsi,  elle  serait  donc  d’autant  plus  forte  que  la  taille  de  l’ag-
glomération croît. La ville finissant par croître parce que la validité croît. Il s’agit ici d’une relation circu-
laire  tautologique  de  toute  évidence.  Il  devient,  dès  lors,  par  exemple,  impossible  d’expliquer  le  tissu  de
petites  villes  non  agricoles  que l’on rencontre  partout,  et  par  conséquent  la  hiérarchie urbaine  elle-même,
sauf à faire intervenir d’autres facteurs tout aussi spécieux.

1.3. Objectif 3. Une démarche géographique articulant temps, espace et échelles

L’approche  empirique  par  la  description  du  fonctionnement  ne  peut  être  la  voie  essentielle  de  la
compréhension.  Ceci  n’est  pas  nouveau  et  il  faut  être  reconnaissant  à  Jean-Paul  Hubert  (1993)  de  l’avoir
souligné et d’avoir indiqué que la géographie ne pourrait sortir de cette impasse qu’en faisant un effort de
théorisation.

Toutefois, il apparaît que l’universalité de la géométrie fractale doit conduire à se poser la question
de son utilisation dans une approche purement structurelle. En d’autres termes, est-il possible de trouver un
formalisme  théorique  qui  instrumente  la  fractalité  afin  d’expliciter  les  règles  de  niveau  structurel  qui
expliqueraient les processus sans sujet à l’œuvre dans la constitution, par exemple, d’une ville ?

Dès lors, il  devient possible de réfléchir en termes de covariance d’échelle (qui est  une invariance
plus  profonde  où  c’est  la  forme  des  équations  qui  est  conservée  plutôt  que  seulement  leurs  coefficients
numériques) plutôt qu’en termes d’invariance d’échelle (qui n’est qu’un cas particulier de covariance) pour
chacune de ces morphologies qui se trouvent ainsi liées à un espace à cinq dimensions (trois dimensions de
l’espace classique, une correspondant au temps, et une autre pour la dimension d’échelle) ; l’étape suivante
consistant  à  caractériser  des  lois  d’échelle.  Cela  peut  se  faire  en  posant  comme  principe  fondamental
- comme cela  a  déjà  été  fait  en  physique -  que  ces  lois  ne  doivent  pas  dépendre  du  référentiel  utilisé  (en
introduisant  l’échelle  dans  la  définition  de  l’état  du  référentiel)  cela  afin  d’accéder  à  une  universalité
maximale.
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Ainsi,  comme dans  la  théorie  de  la  relativité  généralisée,  la  mise  en  œuvre  de  la  covariance  dans
des  modèles morphogénétiques  permet  de  construire  des équations  relativistes  d’échelle.  Les solutions  de
ces équations définissent les lois d’échelle possibles, c’est-à-dire des lois caractérisant de façon explicite la
dépendance  des  diverses  grandeurs  en  fonction  de  la  résolution.  Cela  revient  à  établir  la  façon  dont  ces
grandeurs  se  transforment  lorsque  l’on  passe  d’une  échelle  d’observation  à  une  autre.  C’est  ainsi  qu’un
véritable  espace  des  échelles  (espace  contenant  toutes  les  résolutions)  est  défini  et  permet  d’aborder  de
manière  nouvelle  la  question  de  l’organisation  interne  des  systèmes  structurés  en  échelle.  Il  est  clair  que
cela est fondamental tant en géographie humaine qu’en géographie physique.

 Parmi les lois déduites de ce formalisme, le géographe retrouvera les lois suivant un modèle « puis-
sance »,  qui  sont  des  lois  de  type  fractal  (invariance  d’échelle),  qu’il  avait  utilisées  dans  un  cadre
empirique. Elles sont maintenant, dans le nouveau cadre, établies à partir de principes universels tant pour
les lois  les  plus simples que pour les  lois  les  plus générales.  Parmi celles-ci,  on peut  citer  celles  qui  intè-
grent  des  corrections  log-périodiques,  qui  ont  été  appliquées  avec  succès  dans  des  analyses  spatio-tem-
porelle  (Forriez,  2005 ;  Forriez  et  Martin,  2008 ;  Martin  et  Forriez,  2008),  ainsi  que  dans  des  réflexions
plus générales impliquant une « dynamique d’échelle ».

Tout comme avec la relativité d’échelle qui mène naturellement à une nouvelle généralisation de la
géométrie de l’espace-temps qui n’y est plus seulement courbe, mais aussi non-différentiable (ce qui signi-
fie  que  l’on  ne  peut  plus  y  définir  une  dérivée,  donc  des  vitesses  ou  des  accélérations  au  sens  ordinaire,
dans  des  approches  de  nature  physique)  et  fractal  (c’est-à-dire  explicitement  dépendant  de  l’échelle  de
résolution, cette dépendance allant jusqu’à la divergence quand l’échelle tend vers zéro), il est possible en
géographie de penser un espace voire un espace-temps dont les coordonnées sont fractales.

Il faut souligner que ce concept d’espace-temps fractal ne se réduit pas à celui d’objet fractal auto-
similaire  -  popularisé  par  Benoît  Mandelbrot  -  qui  concerne  la  description  empirique  d’objets  dans  un
espace  qui  reste  euclidien,  mais  permet  en  plus  de  formaliser  tant  des  lois  d’échelle  que  des  dynamiques
d’échelle qui sont à la base de toute morphogenèse. Ainsi, en relativité d’échelle, c’est l’espace-temps lui-
même qui  devient  fractal  ce  qui  implique des  propriétés  nouvelles  pour  les  objets  qu’il  contient.  On  peut
ainsi  hypothétiquement  considérer  que  les  formes  elles-mêmes,  dans  une  certaine  mesure,  sont  le  reflet
d’états  stationnaires  présents  dans  des  attracteurs,  plus  ou  moins  étranges  (c’est-à-dire  chaotique).  Ceci
conduit à des modèles et des caractérisations qui commencent à être entrevus et qu’il faut préciser via cette
thèse.

La géographie semble donc être une science particulièrement bien adaptée pour mettre en œuvre les
modes d’analyse et les outils de la théorie de la relativité d’échelle. Dès lors, la géographie pourrait tirer un
grand bénéfice en termes conceptuels et appliqués de l’utilisation de ces principes et méthodes.

Dans  cette  perspective,  les  invariants  obtenus  par  l’analyse  des  structures  spatiales  fractales  pour-
raient  servir  à  caler  ou  à  valider  la  théorisation  dont  on  espère  qu’elle  permettra  de  rendre  compte  de  la
cohérence  par  niveau  (par  échelle  dans  le  langage  géographique  courant)  d’entités,  donc  de  l’émergence
des limites de ces entités ;  limites qui sont en rapport avec la cohérence de l’entité, qui peuvent être frac-
tales  ou  non,  et  qui  sont  le  support  d’un  certain  nombre  de  réactions  ou  d’échanges  entre  l’entité  et  son
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environnement. Derrière cette question se cache peut-être la question centrale de la géographie, du moins,
la  question  sur  laquelle  une  grande  partie  de  sa  pratique  se  fonde,  à  savoir  « qu’est-ce  qui  détermine  les
échelles fondamentales de la nature ? » (Nottale, 1998, p. 149).

Dans  ce  contexte,  cette  théorisation  s’appuie  sur  une  description  structurelle  qui  fait  l’hypothèse
d’une  dynamique  d’échelle ;  c’est-à-dire  d’une  dynamique  mue  par  la  modification  de  la  gamme  des
échelles (ou des rapports entre les échelles) dont la conséquence est la mobilité des limites ; limites consub-
stantielles à la gamme puisque celle-ci, par définition, ne peut s’étendre de moins à plus l’infini. Autrement
dit,  il  s’agit  de  l’idée  qu’à  n’importe  quelle  échelle  de  nouvelles  structures  apparaîtront.  C’est  donc  une
manière  élégante  de  contourner  la  difficulté  du  chaos  apparent  de  cette  organisation.  L’approche  multi-
scalaire « classique », celle de Yves Lacoste (1976), l’avait bien identifiée empiriquement.

En d’autres termes, il faut postuler que la dynamique fondamentale est une « dynamique d’échelle »
(variation  positive  ou  négative  de  la  gamme  d’échelles)  qui  se  traduit  par  une  dynamique  dans  l’espace
tangible.  Cela  implique que la  modélisation  doit  se  situer  préférentiellement  à  ce  niveau  très  théorique et
pas seulement au niveau des conséquences tangibles. Elle doit donc porter sur les causes des manifestations
phénoménologiquement perceptibles c’est-à-dire sur le niveau de la dynamique « interne » d’échelle.

Ce  qui  est  proposé  ici  consiste  à  passer  d’une  modélisation  des  manifestations  fractales  des
dynamiques  « internes »  d’échelle  (mesures  de  caractéristiques  fractales,  par  exemple,  mais  aussi  analyse
spatiale  d’objets  structurés  en  échelles,  mais  plongés  dans  un  espace  euclidien  comme  un  arbre  dans  un
cube  ou  une  coupe  topographique  sur  une  feuille  de  papier,  etc.),  à  une  modélisation  de  la  dynamique
« interne » d’échelle, elle-même à partir de laquelle conséquemment sera obtenu la modélisation des mani-
festations fractales de l’espace tangible.

Par ailleurs, le lien entre échelles et limites pourrait peut-être permettre de résoudre le problème de
la forme optimale de tel ou tel objet géographique dans la mesure où la gamme d’échelles possible renvoie
à des déterminants structurels formalisables à partir  d’un espace-temps fractal à cinq dimensions, tel celui
conçu  et  utilisé  par  Laurent  Nottale  (1993 ;  1998).  Ainsi,  la  conquête  d’un  espace  des  échelles  par  une
articulation des limites entre elles en fonction de leur inclusion ou de leur indépendance permettrait d’offrir
de nouveaux outils pertinents aux urbanistes, par exemple, ou tout autre ingénieur.

L’argument  qui  est  au  cœur  de  la  thèse  est  que  la  géographie  est  d’abord  scalaire  avant  d’être
spatiale. Aussi, une réflexion épistémologique au sujet des échelles en géographie s’imposera, car le terme
renvoie  très  souvent  à  des  réalités  fort  différentes  d’un  auteur  à  un  autre.  Au  terme  de  cette  réflexion,
l’introduction des structures fractales permet de faire la transition avec les parties suivantes qui proposeront
d’avancer  dans  ces  investigations  à  travers  quelques  cas  rencontrés  tant  en  géographie  physique  qu’en
géographie  humaine.  En  géographie  physique,  le  cas  du  réseau  hydrographique  des  Gardons  permettra
d’introduire  les  concepts  d’arborescence  fractale  et  de  transition  fractal - non  fractal.  En  géographie
urbaine, une réflexion sera menée autour de la définition de la limite des villes.  Une première étude s’in-
téressera aux taches urbaines de différentes villes  du monde. Deux études complémentaires seront ensuite
menées par l’intermédiaire de la « ville d’Avignon » définie par son réseau intra-urbain et de la répartition
du  bâti  dans  la  communauté  d’agglomération  de  Montbéliard.  Elles  auront  pour  objectif  de  montrer  les
rapports étroits entre échelle, limite et irrégularité. En géohistoire, l’étude de la répartition de mottes et de
châteaux en Picardie historique consistera à mener une recherche réellement spatio-temporelle sur un temps
long (environ dix siècles) tout en explicitant un élément structurant important dans la localisation actuelle
des villes et des villages français. En géographie du peuplement, la répartition de l’établissement humain à
l’échelle  planétaire  permettra  de  réaliser  une  analyse  utilisant  l’intégralité  des  méthodes  proposées  dans
cette thèse. Elle permettra également de réaliser un lien entre peuplement et ville via  d’une part, les struc-
tures  rang - taille  de  chaque  État  du  monde,  et  d’autre  part,  une  analyse  multi-échelle  complète.  Le  plan
choisi  se  structure  donc  en  échelles :  on  part  d’une  petite  étendue  (20-50 km)  pour  arriver  à  une  grande
étendue (la planète entière), en passant par une étendue intermédiaire (200 km).
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Partie 1. Échelles, limites et modèles : la forme en 

géographie

  19



20   



2
Échelles en géographie

La  géographie  utilise  abondamment  le  concept  d’échelle  qui  possède  plusieurs  significations.  En
effet, « les notions d’échelle et de changements d’échelle sont au centre de beaucoup de préoccupations : on
cherche  à  prendre  en  compte  les  relations  ou  interactions  entre  des  entités  relatives  à  des  échelles  dif-
férentes. L’analyse ou la modélisation de ces interactions est devenue pour toute discipline une nécessité »
(Mathian  et  Piron,  2001,  p. 61).  Toutefois,  avant  de  développer  davantage  le  sujet,  il  est  bon  de  rappeler
qu’il s’agit d’une préoccupation récente. En effet, « dans la géographie française de la fin du XIXe siècle, et
sous  réserve  d’inventaire,  le  terme  d’échelle  semble  réservé  à  la  cartographie » (Robic,  2002).  Le  glisse-
ment d’une notion marginale à une notion centrale s’est réalisé dans le courant du XXe siècle, avec notam-
ment  l’avènement  de  la  Nouvelle  géographie  (Brunet,  1968),  et  de  l’analyse  spatiale  (Lacoste,  1976 ;
Marceau,  1999).  Autour  du  terme  « échelle »  gravite  des  concepts  prospectifs  comme  « résolution »,
« niveau » ou encore « échelon ».

2.1. Échelle, résolution et niveau

Le  terme  « échelle »  vient  du  latin  scala  qui  signifie  échelle  dans  le  sens  de  l’outil  servant  à
grimper,  ainsi  que  du  terme  scalare  qui  signifie  escalier.  En  français,  ces  termes  ont  donné  le  terme  « s-
calaire » qui  fut  essentiellement  repris  en mathématique pour désigner  un nombre réel  ou complexe quel-
conque. Par exemple, on appelle produit scalaire de deux vecteurs, l’opération qui associe les coordonnées
de ces vecteurs pour donner un nombre, un scalaire. De plus, en physique, on distingue le champ scalaire
du  champ  vectoriel.  Le  champ  scalaire  correspond  à  un  « champ  de  nombres »,  à  un  vecteur  ayant  une
composante,  tandis  qu’un  champ  vectoriel  est  un  vecteur  ayant  plusieurs  composantes.  En  géographie,
« scalaire » correspond  à  un  adjectif  épithète  renvoyant  au  terme « échelle ».  Pour  finir,  aujourd’hui,  util-
isée au sens figuré, l’échelle en géographie est devenue une notion très générale qui est synonyme d’ordre
de grandeur.
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2.1.1. L'échelle en géographie

En géographie, l’échelle recouvre deux réalités : l’une est quantitative, l’autre qualitative. La notion
quantitative  correspond à  un  rapport  entre  la  mesure d’une distance sur  une carte et  la  mesure d’une dis-
tance  sur  le  terrain  (Baudelle  et  Regnauld,  2004,  p. 8).  Il  s’agit  donc  d’un  simple  rapport  homothétique.
Cependant, l’échelle est aussi pour le géographe une notion qualitative qui fut introduite par Yves Lacoste,
dans son célèbre ouvrage de 1976, La géographie, ça sert d’abord à faire la guerre. Il inventa un nouveau
type de raisonnement  en  géographie fondé sur  l’articulation des  échelles  entre elles  pour  étudier  un  terri-
toire.  En  reprenant  la  racine  latine,  il  le  baptisa :  approche  multi-scalaire  (qui  signifie  littéralement
« plusieurs échelles ») consistant à expliquer l’état  (social, économique, etc.) d’un territoire par l’emboîte-
ment des échelles.  Il  partait  d’un postulat,  basique aujourd’hui, qu’une localisation n’avait  pas les mêmes
intérêts  géopolitiques  en  fonction  du  niveau  administratif  et  politique.  Depuis,  c’est  surtout  cette  analyse
qui fut mise en œuvre par les géographes.

Depuis,  la  notion  d’échelle  s’est  complexifiée.  L’approche  la  plus  simple  est  sans  doute  celle  de
l’écologue Jérôme Mathieu (2007) qui rappelle qu’il existe plusieurs types d’échelles : l’échelle d’observa-
tion,  l’échelle  des  processus  spatiaux  et  l’échelle  des  niveaux  d’organisation.  L’échelle  d’observation  est
fondamentale,  car  elle  précise  la  qualité  de  l’information  des  structures  spatiales  étudiées  (Piron,  1992 ;
Piron, 1993). Il faut évidemment que cette échelle soit en adéquation avec l’objet étudié. Autrement dit, il
est  nécessaire  que  l’instrument  de  mesure  (ou  l’outil  d’observation)  soit  adapté  (Marceau,  1999).  Par
exemple, mesurer une salle de cours en parsec ou en angström n’a aucun sens. Autrement dit, lorsque l’on
analyse  une  mesure,  tous  nos  résultats  dépendent  souvent  de  l’échelle  d’observation  (Mandelbrot,  1977 ;
Nottale,  1993),  car  l’information  même  d’une  structure  dépend  de  la  résolution :  « il  faut  choisir  une
échelle de description » (Delahaye, 1999, p. 23). Une fois l’échelle d’observation fixée, il faut définir la ou
les échelles du ou des processus spatiaux. Pour ce, il faut fixer une étendue c’est-à-dire la limite d’une zone
d’étude. Cela permet de fixer une résolution qui n’est pas une échelle géographique au sens de la cartogra-
phie. La résolution est la limite du mesurable. Ainsi,  la limite des mesures effectuées sur une carte papier
est  le  rapport  entre  le  millimètre  (une  règle  fournit  rarement  une  mesure  en  deçà)  et  l’échelle
cartographique.

Avant de poursuivre, il  est  bon de rappeler que c’est la résolution qui commande la définition des
petites  et  grandes échelles  en géographie.  À savoir  que,  plus  une résolution  est  fine  (par  rapport  à  l’objet
étudié),  plus  l’échelle  est  grande.  A  contrario,  plus  une  résolution  est  grossière  (par  rapport  à  l’objet
étudié), plus l’échelle est petite. Cette originalité de la géographie est toujours bonne à rappeler, car, pour
toutes  les  autres  disciplines,  l’échelle  reste  une  question  de  taille.  Généralement,  la  taille  servant  de
référence est la taille humaine (Volvey, 2005, p. 18). Plus la taille est grande (par rapport à un être humain),
plus l’échelle est grande. De même, plus la taille est petite (par rapport à un être humain), plus l’échelle est
petite.  Cette  ambiguïté  entre  la  résolution  et  la  taille  marque  bien  l’extrême difficulté  de  définir  le  terme
« échelle ». Toutefois, l’étendue (ou encore la « fenêtre ») et la résolution doivent pouvoir fournir une sorte
de compromis : une haute résolution ne peut qu’avoir une faible étendue, et vice-versa. Dans l’étude de la
ville d’Avignon, la grande étendue et la grande résolution (1 pixel pour 1 × 1 m) aboutit à une saturation de
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la mémoire d’un ordinateur, ce qui nécessite des partitions de cette image (cf. chapitre 8). Enfin, l’échelle
des niveaux d’organisation permet d’expliquer l’émergence spatiale des objets géographiques. Il existe des
objets  à  une  résolution  de  1 / 100  m  comme  les  villes  qui  n’ont  pas  du  tout  la  même  morphologie  à
1 / 25 000 m, et surtout, si l’on conserve la même étendue, elles n’ont pas du tout le même environnement.
Pourtant,  c’est  le  même objet  géographique.  L’échelle  a donc des  propriétés  émergentes  que l’on  nomme
niveau, celles-ci permettant de faire apparaître de nouvelles limites. Le niveau possède un terme qui lui est
presque  synonyme :  l’échelon  lorsqu’il  s’agit  d’un  territoire  issu  d’une  structure  politico-administrative.
Comme  le  rappelle  Roger  Brunet  (Brunet  et  alii,  1992,  p. 176),  l’échelon  correspond  au  barreau  d’une
échelle.  Par  extension,  un  échelon  définit  un  niveau  d’analyse,  c’est-à-dire  un  palier  dans  une  hiérarchie
(Brunet et alii, 1992, p. 349). Autrement dit, niveau et échelon correspondent aux aspects structurels de la
notion  d’échelle.  En  règle  générale,  le  niveau  renvoie  à  une  étude  mono-scalaire  car  il  correspond  à
l’échelle d’étude idéale de l’objet  géographique étudié.  « Chaque unité géographique associe, à  un niveau
donné ayant sa propre logique, des acteurs et leur stratégie, spécifique à la fois d’une formation sociale et
d’une dimension spatiale et  temporelle,  particulière » (Bouzat, 1990, p. 66).  Elle devient alors  son échelle
privilégiée,  ce  que  déplore  d’ailleurs  Marie  Piron :  « très  souvent,  l’information  traitée  en  géographie  est
observée  à  une  échelle  [On  considère  l’échelle  comme  le  niveau  d’analyse  utilisé  pour  le  traitement  des
données] qui correspond à un certain niveau d’agrégation spatial » (Piron, 1993).

Pour remédier à ce constat, Marie Piron mit en œuvre ce qu’elle appelle « l’analyse des systèmes en
échelles ».  Marie  Piron  avait  parfaitement  compris  ce  qui  bloquait  le  développement  quantitatif  de  l’ap-
proche multi-scalaire, à savoir que « le processus d’agrégation transforme l’information puisque celle-ci est
analysée non plus  suivant  l’unité élémentaire d’observation,  mais suivant  une unité  spatiale définissant  le
niveau  d’agrégation  géographique »  (Piron,  1993).  Autrement  dit,  selon  elle,  il  existe  un  « système
d’échelles » qui est « défini par un ensemble de niveaux d’analyse, de données descriptives de ces niveaux
et de relations entre eux » (Piron, 1993). Certains sceptiques diraient, « Et alors ? C’est normal et trivial ! ».
En fait, le système d’échelle d’un objet est une donnée fondamentale. Le choix de tel ou tel niveau permet
de masquer des informations présentes au niveau précédent ou suivant. Cela revient à nier qu’il existe une
relation  entre  les  niveaux  d’étude.  C’est  donc  une  approche  contraire  à  ce  qui  était  annoncé  dans  une
approche multi-scalaire. Marie Piron développa un modèle de comparaison entre les niveaux d’observation
de données de la ville d’Ouagadougou à partir d’une analyse multivariée effectuée à chacun de ces niveaux
d’analyse. Ce faisant, elle compara les gains et  les pertes d’informations entre ces niveaux. Enfin, il  exis-
terait des objets qui restent constamment apparents quel que soit le niveau choisi. Ce type d’objet fut appelé
« transcalaire »  par  Claude  Raffestin.  Ainsi,  un  phénomène  transcalaire  « intéresse  toutes  les  échelles
géographiques » (2001).

Pour conclure, « travailler simultanément sur plusieurs échelles permet de décider du niveau d’anal-
yse  pertinent  pour  un  phénomène  donné  et  de  saisir  l’influence  des  mêmes  facteurs  sur  des  niveaux  dif-
férents. Cela nous conduit à réfléchir parallèlement à la pertinence des découpages géographiques presque
toujours arbitraires servant de base à la stratification et à la cartographie » (Piron, 1993). Toutefois, l’étude
de  la  relation  entre  les  niveaux  revient  à  poser  deux  nouvelles  questions.  (1)  Pourquoi  et  comment  les
différents niveaux se réorganisent-ils ? (2) Pourquoi et comment les différents niveaux se simplifient-ils ou
se  complexifient-ils ?  Autrement  dit,  ce  type d’analyse  renvoie  au concept  d’émergence,  ce  que l’on  peut
définir comme une « apparition inattendue et soudaine (dans une série d’événements ou d’idées) » (Mayet,
2005, p. 5). En effet, généralement, cette rupture peut s’expliquer si l’on change de niveau, en allant vers la
petite ou la grande échelle (Petitot, 2004). De plus, l’émergence peut engendrer de l’ordre ou de la simplifi-
cation. Cette réorganisation apparente est  un phénomène appelé auto organisation qui correspond à « l’ap-
parition  spontanée  d’une  forme  ou  d’une  structure  qui  ne  résulte  pas  d’un  programme  codé  comme  un
algorithme (Sapoval, 1997, p. 166).
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2.1.2. Échelles et géométrie fractale

À  partir  de  là,  entre  en  scène  la  géométrie  fractale  (cf.  chapitre  4).  En  effet,  l’idée  de  « système
d’échelle » de Marie Piron n’est rien d’autre que la définition triviale de cette géométrie : « le processus de
l’analyse du système d’échelles revient à faire des « allers-retours » entre les niveaux pour comprendre les
mécanismes  d’organisation  d’un  espace » (Piron,  1993),  c’est-à-dire  étudier  la  relation  entre  ces  niveaux.
De  plus,  la  géométrie  fractale  répond  aux  quatre  questions  sans  réponses  de  Marie  Piron,  à  savoir :  (1)
« quel est  l’effet du découpage géographique sur la perception d’un phénomène donné, autrement dit quel
niveau d’analyse choisir et quelles sont les conséquences de ce choix ? (2) À quel niveau une variable perd-
t-elle  son  pouvoir  de  discrimination ?  (3)  Trouve-t-on  les  mêmes  éléments  d’organisation  aux  différentes
échelles ? (4) Quelle est la nature de l’hétérogénéité interne des unités spatiales ? » (Piron, 1993) L’applica-
tion  de  la  géométrie  fractale  dans  différents  domaines  de  la  géographie  physique  et  humaine  à  la  fin  des
années  1980  a  permis  de  renouveler  la  question  des  échelles.  Cette  géométrie  fractale  fut  inventée  par  le
mathématicien  Benoît  Mandelbrot  (1975).  Il  s’agit  d’une  nouvelle  approche  mathématique  consistant  à
analyser les résolutions. Il  avait donc besoin d’inventer de nouveaux mots pour qualifier des objets qui se
développent  dans  les  échelles.  Il  les  appela  d’abord  objets  à  « comportement  scalant »,  qui  est  un  angli-
cisme  renvoyant  à  une  invariance  sous  les  dilatations  et  les  contractions.  En  effet,  la  langue  anglaise  a
conservé  le  terme  scale,  très  proche  de  sa  racine  latine  scala,  pour  désigner  entre  autres  une  résolution.
D’ailleurs, en géographie, l’échelle « est toujours employée au sens d’échelle de résolution spatiale, mais il
fait  tout  aussi bien référence à l’échelle de représentation cartographique qu’aux niveaux d’observation et
d’analyse » (Mathian et Piron, 2001, p. 61).

Il est désormais important, pour ne pas dire essentiel, de distinguer échelle et résolution. L’échelle
désigne plutôt une catégorie générale, tandis que la résolution correspond plutôt à une variable permettant
de  quantifier  ce  concept  d’échelle.  Il  faut  insister  une  nouvelle  fois  sur  le  fait  que  la  résolution  est  un
rapport entre une longueur mesurée sur le terrain, par exemple, et la longueur reportée sur une carte, sur un
plan,  sur  un  schéma,  etc.  Par  exemple,  lorsque  l’on  dit  1  millimètre  représente  100  mètres,  cela  signifie
qu’en  deçà  1  millimètre  on  ne  possède  plus  aucune  information  sur  la  mesure  opérée  sur  le  terrain.  De
même, on appelle ainsi la série de divisions sur un instrument de mesure. La résolution est donc un mail-
lage.  On  peut  ainsi  définir  différent  type  de  maillage.  Le  plus  courant,  le  plus  utilisé  est  évidemment  le
maillage carré,  mais  il  n’est  pas unique.  Il  existe également  le  maillage rectangulaire,  hexagonal  et  circu-
laire, etc.

Échelle, résolution et niveau ne sont jamais uniques car, « d’une façon plus générale, tout change-
ment  d’échelle  modifie  les  perceptions  et  les  représentations,  et  parfois  même la  nature  des  phénomènes.
[…]  Le  changement  constant  d’échelle,  s’il  est  maîtrisé,  est  extrêmement  utile  et  la  compréhension  tran-
scalaire  et  multiscalaire  de  l’espace  est  toujours  supérieure  à  une  vision  monoscalaire »  (Brunet  et  alii,
1992, p. 175).
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2.2. Multi-échelle, multi-résolution et multi-niveau

Étudier une échelle, une résolution et un niveau a peu d’intérêt, car « il se passe beaucoup de choses
quand on change d’échelle, c’est-à-dire d’ordre de grandeur dans les échelles et dans la taille des phénomè-
nes » (Brunet et alii, 1992, p. 175). De plus, « le changement d’échelle sert de signe de reconnaissance des
géographes  [et]  sert  de  marqueur  corporatif »  (Lévy  et  Lussault,  2003,  p. 287).  Pour  étudier  les  change-
ments  d’échelle,  il  existe  différents  concepts  communs  entre  la  géographie  et  d’autres  sciences :  multi-
échelle,  multi-scalaire,  multi-résolution  et  multi-niveau.  Pour  définir  rigoureusement  ces  termes,  il  faut
procéder de manière analogique par rapport aux définitions données des termes « échelle », « résolution » et
« niveau ».  Ainsi,  l’approche  multi-échelle  est  une  expression  générique  pour  désigner  les  différentes
relations  qu’il  peut  exister  entre  les  échelles,  d’où  l’importance  de  la  théorie  de  la  relativité  d’échelle  où
seules les relations ont un sens, et non pas les échelles elles-mêmes dans l’absolu.

2.2.1. L'approche multi-scalaire

L’approche multi-scalaire  est  l’approche multi-échelle  la  plus  ancienne en géographie.  Il  s’agit  de
celle d’Yves Lacoste (1976).  Elle consiste à étudier l’emboîtement  d’un objet  à  différentes échelles.  Pour
cela,  il  faut  « classer  les  différentes  catégories  d’ensembles  spatiaux,  non  pas  en  fonction  des  échelles  de
représentation,  mais  en  fonction  de  leur  différence  de  taille  dans  la  réalité » (Lacoste,  1976,  p. 68).  C’est
ainsi  qu’il  faut  « ordonner la  description et  le  raisonnement  géographique en différents  niveaux d’analyse
spatiale  qui  correspondent  à  différents  ordres  de  grandeurs  des  objets  géographiques,  c’est-à-dire  des
ensembles spatiaux qu’il importe de prendre en considération pour rendre compte de la diversité des combi-
naisons de phénomènes à la surface du globe » (Lacoste, 1976, p. 68). A la suite des investigations d’Yves
Lacoste, plusieurs méthodes d’analyse quantitative ont vu le jour. D’abord, on utilisa l’analyse de la vari-
ance  (Haggett,  1973 ;  Sanders,  1989 ;  Grasland,  1991).  Puis,  on  utilisa  des  études  multidimensionelles
comme  l’analyse  en  composantes  principales  et  l’analyse  factorielle  des  correspondances  (Rozenblat,
1989). Enfin, Stewart Fotheringham et David. Wong (1991) utilisèrent des modèles de régression linéaire
multiple pour traiter le problème de l’unité zonale modifiable (M.A.U.P.). Le M.AU.P. est un objet d’étude
extrêmement intéressant, car ils montrent comment une structure change avec la résolution initiale utilisée.
Jusqu’à  présent,  l’objectif  de  ceux  qui  l’étudient  est  de  supprimer  ce  problème.  La  relativité  d’échelle
montre que c’est impossible (Nottale, 1989 ; 1993 ; 1998 ; 2001a ; 2001b ; 2002a ; 2002b). De plus, toutes
ces  méthodes  souffrent  d’un  manque théorique  sous-jacent ;  théorie  qui  pourrait  être  celle  de  la  relativité
d’échelle.

2.2.2. L'approche multi-résolution

L’approche  multi-résolution  consiste  à  étudier  un  objet  géographique  à  plusieurs  résolutions  don-
nées.  Elle  permet  de  trouver  quels  sont  les  « bons »  niveaux  d’observation  possibles.  C’est  une  telle
approche qui sera développée dans le cas de l’étude morphométrique d’Avignon (cf. chapitre 8).

2.2.3. L'approche multi-niveau

L’approche  multi-niveau  consiste  à  mettre  en  relation  les  niveaux  d’observation  et  les  niveaux
d’organisation (Mathian et Piron, 2001, p. 62). En effet, les différentes tailles d’un objet s’articulent autour
de plusieurs niveaux d’organisation, c’est-à-dire de niveaux à partir desquels l’environnement spatial d’un
objet change. La relation de dépendance entre ces niveaux est double : soit il s’agit d’une inclusion, soit il
s’agit d’une intersection. La première a été la plus utilisée jusqu’à présent. Elle consiste à prétendre qu’un
objet  géographique  s’emboîte  comme  les  poupées  gigognes.  La  seconde  est  plus  rarement  utilisée,  du
moins de manière explicite. Elle consiste à dire que l’information entre les niveaux change de nature. Cela
renvoie  à  tous  les  problèmes  autour  de  l’agrégation,  notamment  du  M.A.U.P.  (Fotheringham  et  Wong,
1991).
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2.3. Effet d'échelle et effet de maillage

Tout cela, conduit naturellement à ce que tous les géographes appellent « l’effet d’échelle » (Claval,
2003, p. 56-58) d’une part, et « l’effet de maillage » d’autre part. « Le premier appelé « effet d’échelle » est
lié  au  biais  introduit  par  le  choix  d’un  échelon  pour  l’observation  d’une  distribution.  Le  second,  appelé
« effet de maillage », est lié au biais introduit par le choix d’un maillage, pour un échelon donné » (Mathian
et  Piron,  2001,  p. 63).  L’effet  de  maillage  concerne  donc  la  résolution.  En  fait,  les  deux  effets  observés
correspondent  à  différents  aspects  de  la  manifestation  de  la  fractalité  d’un  objet  (Nottale,  1993).  Comme
cela sera  montré dans  le  chapitre 8,  avec  l’exemple de  l’étude morphométrique de  la ville  d’Avignon,  les
deux effets sont intimement liés et dans la pratique, les distinguer est une gageure.

Aujourd’hui, le concept d’échelle en géographie semble être menacé. En effet, pour Denise Pumain
(2003),  les  échelles  intermédiaires  entre  le  local  et  le  global  sont  peu  étudiées.  Elle  se  pose  d’ailleurs  la
question de leur existence. Pour elle, le territoire ne présente plus d’intérêt, seuls les réseaux comptent.

De  plus,  l’analyse  multi-scalaire  d’Yves  Lacoste  reste  valable  pour  des  problèmes  géopolitiques
(Raffestin,  2001).  Par  contre,  dans  les  autres  analyses  menées  dans  les  différentes  sous-disciplines  de  la
géographie,  elle  semble  caduque.  En  géographie  humaine,  par  exemple,  aujourd’hui,  dans  l’ère  des  nou-
velles technologies de l’informatique et de la  communication, ce qui compte est  d’être branché, connecté.
La distance ne compte désormais plus, car chaque individu a directement accès au reste du monde. Toute-
fois,  l’analyse  multi-échelle  conserve  tout  son  sens  dans  l’analyse  de  morphologies  tangibles,  via  notam-
ment  la  géométrie fractale.  Ainsi,  la  notion  d’échelle conduit  à  celle de  limite.  Les deux  sont  intimement
liées.
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3
Limites et discontinuités en géographie

Limites et discontinuités sont au cœur de l’analyse spatiale (Brunet, 1968). Dans Le Robert (1973),
la  première  définition  d’une  limite  est  une  « ligne  qui  sépare  deux  terrains  ou  territoires  contigus  (bord,
confin,  frontière,  lisière) ».  Le  dictionnaire  poursuit  la  définition  en  précisant  qu’il  s’agit  à  la  fois  d’un
début et d’une fin. Cette première partie de la définition décrit la limite comme quelque chose de ponctuel :
« point  que  ne  peut  ou  ne  doit  pas  dépasser  une  activité,  une  influence  (barrière,  borne,  extrémité) ».  La
limite est  donc perçue comme un point  que l’on ne peut franchir,  un point contre lequel  on butte. Cepen-
dant,  la  limite  « sépare  autant  qu’elle  unit » (Martin,  2003c,  p. 129).  Pour  le  géographe,  « la  limite  est  ce
qui  permet  de  circonscrire  un  ensemble  spatial  donné.  […]  La  limite  apparaît  comme  la  périphérie  d’un
ensemble  cohérent,  construit  à  partir  d’un  centre,  d’un  pouvoir  et  de  l’appropriation  identitaire  de  cet
espace » (Renard, 2002, p. 40). Les limites peuvent alors se classer en deux catégories : les limites progres-
sives et  les  limites linéaires.  « En  géographie,  l’absence de limite  serait  un espace  isotrope et  homogène ;
c’est-à-dire en géomorphologie une plaine particulièrement plane et infinie dont l’érosion se ferait par des
départs également distribués de matériel » (Martin, 2003c, p. 128). Par ailleurs, la limite, si elle s’accentue,
devient une discontinuité, c’est-à-dire, en géographie, une unité spatiale particulière qui est, soit organisée,
soit  désorganisée.  Philippe  Martin  propose  deux  catégories  de  discontinuités :  les  discontinuités
topologiques entre deux états quasiment statiques et les discontinuités correspondant à des lignes ou à des
surfaces  entre  deux  entités  en  mouvement  plus  ou  moins  rapide.  Elle  semble  alors  plus  unir  qu’elle  ne
sépare (Martin, 2003c, p. 128). Il est important de noter que les limites peuvent émerger sans aucune action
anthropique.  Pourquoi  et  comment  les  limites  émergent-elles ?  Comment  se  cristallisent-elles ?  Ces  ques-
tions posent à nouveau le problème de la morphogenèse.

La  cristallisation  se  réalise  essentiellement  grâce  à  la  naissance  d’une  cohérence.  D’après  Le

Robert, une cohérence est une « union étroite des divers éléments d’un corps ». La cohérence est liée donc
à la notion d’existence. Celle d’un système fait alors émerger ses limites tangibles qui participe à la défini-
tion d’une forme. Celles-ci matérialisent le degré de fermeture. Il existe un « dedans » et un « dehors », le
« dehors » étant ce que l’on nomme l’environnement. À partir  de là,  ce « dehors » structure le « dedans ».
Autrement dit, dans le « dedans » émerge une identité (Gay, 2004). Par ailleurs, l’émergence des limites est
aussi liée à la notion d’échelle, car toute limite possède un niveau privilégié dans lequel il est possible de la
percevoir.  En  effet,  la  limite  « permet  de  circonscrire  des  objets  d’étude  à  des  échelles  spécifiques  dont
l’articulation  peut  conduire  à  un  discours  explicatif,  voire  démonstratif »  (Martin,  2003c,  p. 129).  Une
échelle  n - 1  est  incluse  dans une échelle  n,  par  exemple.  Cet  emboîtement  contribue à  faire émerger  une
limite,  donc  une  forme.  Encore  une fois,  l’échelle  et  la  taille  sont  au  cœur  de  la  réflexion,  sans  elles  nul
problème  ne  peut  être  défini.  Aujourd’hui,  on  possède  un  outil  qui  permet  de  décrire  l’emboîtement  des
échelles : c’est la géométrie fractale. « La mesure d’une chose dépend de l’outil de mesure que l’on utilise.
Le mathématicien Benoît Mandelbrot a eu l’intuition de transformer « outil » en « échelle » » (Baudelle et
Regnauld, 2004, p. 101).
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L’analyse  spatiale  permet  de  définir  méthodologiquement  une  limite  ou  une  discontinuité.  Cette
approche se caractérise par « l’ensemble des méthodes et  des techniques qui  décrivent la manière dont un
ou plusieurs phénomènes s’inscrivent dans l’espace - qu’il s’agisse de leur distribution, de leur configura-
tion ou de leur covariation - afin de déceler et de quantifier les interrelations qui sous-tendent les organisa-
tions  spatiales »  (Voiron-Canaccio,  1995,  p. 14).  Au  cours  de  son  évolution,  elle  a  privilégié  trois
approches.  Tout  d’abord,  l’approche  classique  de  Roger  Brunet  consiste  à  rapprocher  l’explication  des
discontinuités spatiales de la théorie des systèmes. Ensuite, cette approche a évolué vers des modélisations
de différentes natures (graphique, discursif, mathématique). Toutefois, celle-ci semble aujourd’hui arriver à
une  impasse  (Martin,  1997 ;  2003a ;  2003b ;  2006a ;  2006b ;  2006c ;  2006d ;  2006e  ;  2008a ;  2008b ;
2008c).  Aussi,  une  approche  plus  globale  semble  percer  aujourd’hui,  même  si  cela  se  fait  de  manière
insconsciente : l’approche relativiste d’échelle.

3.1. L'approche classique : la théorie des discontinuités de Roger Brunet

L’approche que l’on appellera classique est celle qui se fonde sur le concept de discontinuité. Roger
Brunet (1968) fut le premier géographe français à tenter de définir clairement ce concept en géographie.

3.1.1. Le concept de discontinuité en géographie

Une discontinuité  est  une  rupture  apparaissant  dans  l’espace  ou  dans  le  temps.  Les  discontinuités
temporelles  représentent  les  discontinuités  les  mieux  connues,  car  il  demeure  plus  simple  d’identifier  ce
type de discontinuités que celles de l’espace. Toutefois, selon Roger Brunet, l’espace est riche en discontinu-
ités de toutes sortes marquées par des interfaces, des limites et  des frontières, que l’on soit  en géographie
humaine  ou  physique.  Les  discontinuités  de  l’espace  peuvent  être  franches,  brutales  (une  frontière,  un
mur…) ou progressives, ménagées (une transition, une marge, une marche, une plage).

En première typologie, on peut prétendre qu’il existe deux types de discontinuités : les discontinu-
ités  exogènes,  provoquées  de  l’extérieur  et  les  discontinuités  endogènes,  produites  par  le  processus  lui-
même,  par  le  fonctionnement  du  système,  sans  intervention  directe  de  l’environnement.  La  discontinuité
endogène  rétablit  une  forme  de  continuité  là  où  l’on  voit  souvent  une  rupture  inexplicable  ou  jugée
exogène.

En  seconde  typologie,  on  peut  distinguer  les  discontinuités  matérielles  des  discontinuités  symbol-
iques. Ces deux catégories reposent sur l’espace vécu et perçu par les individus.

Roger  Brunet  fonde  sa  théorie  des  discontinuités  sur  la  notion  de  seuil  qui  permet  de  définir  des
discontinuités  progressives.  Finalement,  Roger  Brunet  matérialise  cette  idée  via  les  chorèmes,  ce  qui  lui
permet  d’affirmer  que  l’espace  géographique  comporte  quatre  grandes  sortes  de  discontinuités  (Brunet,
1980). La première discontinuité connue est celle qui associe les réseaux routiers, les ghettos, les quartiers,
etc. Ensuite, il y a toutes celles qui résultent du jeu des principales lois de l’espace connues. De plus, il y a
toutes les lignes de contact (ou interfaces) comme les franges et les bordures, etc. Enfin, il existe toutes les
limites de contrées qui marquent le passage d’un système spatial à un autre.
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3.1.2. Les dix-sept points de la théorie de Roger Brunet (1968)

Roger Brunet fonde sa théorie des discontinuités sur dix-sept points.

1. «  L’évolution  des  phénomènes  naturels  et  l’évolution  des  phénomènes  sociaux  [sont]
produite[s]  par  l’interaction  de  divers  agents  au  sein  de  complexes.  Ces  interactions
peuvent être contradictoires ou cumulatives.

2. La croissance graduelle de l’un des paramètres, de plusieurs d’entre eux ou d’une variable
extérieure peut faire apparaître des discontinuités dans l’évolution.

3. Ces discontinuités se marquent généralement par des seuils.
4. Ceux-ci  correspondent  soit  à  un cisaillement,  soit  à  un changement  d’état,  soit  à  un relais

dans les mécanismes fondamentaux, parfois à deux de ces transformations.
5.  Ils sont,  pour les  phénomènes envisagés, soit  seuils de manifestation ou d’extinction, soit

seuils  de  divergence,  de  renversement,  d’opposition  ou  de  saturation  provoquant
plafonnement ou précipitation.

6. Selon  la  rapidité  avec  laquelle  ils  sont  franchis,  on  distingue  seuils  angulaires  et  seuils
d’inflexion.

7. Le franchissement  d’un seuil  résulte d’une préparation lente,  apparemment  continue,  mais
généralement  faite  d’une  série  de  discontinuités  à  petite  échelle,  durant  laquelle
s’additionnent les tensions ou les informations.

8.  Il peut être facilité, mais non nécessairement, par l’action d’un catalyseur et par la présence
d’une zone de faiblesse.

9.  Une nouvelle période d’évolution graduelle tendant à effacer les effets de la discontinuité
ou à préparer une nouvelle discontinuité suit généralement le franchissement d’un seuil.

10. Celui-ci  marque  ordinairement  une  mutation  qualitative,  provoquée  par  ces  modifications
quantitatives progressives.

11. Le  franchissement  d’un  seuil  peut  n’être  qu’une  oscillation  réversible,  ou  bien  provoquer
des conséquences irréversibles, ou bien déclencher des processus de compensation.

12. Il peut provoquer, avec quelque retard des rétroactions - généralement inférieures à l’action.

13. Il  peut  entraîner  un  renversement  dans  le  sens  de  l’évolution  ou  dans  la  nature  des
phénomènes.

14. Bien des oscillations sont dues au retard et à l’excès avec lesquels agissent les rétroactions.
15. Beaucoup  de  phénomènes  ne  se  manifestent,  beaucoup  d’observations  ne  sont  valables,

qu’entre deux seuils, au-delà desquels le contraire peut être vrai.
16. Les  discontinuités  dans  l’évolution  (discontinuités  dynamiques)  peuvent  faire  apparaître

des discontinuités matérielles (discontinuités statiques).
17. La  notion  de  discontinuité  est  relative ;  elle  dépend  de  l’échelle  d’observation »  (Brunet,

1968, p. 76-77). 

La théorie de Roger Brunet n’a pas beaucoup vieilli. Les points n°1 à 16 représentent l’application
de  la  théorie  des  systèmes  en  géographie.  Les  points  n°6,  7  et  8  sont  plus  spécifiques  à  l’espace  géo-
graphique. En fait, l’objectif de Roger Brunet était d’étudier les discontinuités pour elles-mêmes afin d’en
comprendre  leur  origine.  Autrement  dit,  Roger  Brunet  reprend  à  sa  manière  la  problématique  de  René
Thom, à savoir comment le continu permet-il de produire l’émergence d’une discontinuité. Parmi tous ces
points, seul le n°17 est original dans sa manière de l’expliquer, car il montre que Roger Brunet a parfaite-
ment compris l’importance de la dépendance d’échelle pour les objets géographiques. Ce point correspond
à la définition d’un objet fractal. Pourquoi n’utilise-t-il pas le terme ?
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En fait, les objets fractals étaient mal connus à cette époque. Certes, l’article de Benoît Mandelbrot
(1967) sur les côtes de la Grande-Bretagne avait  été publié, mais pas encore son ouvrage de vulgarisation
de 1975 dans lequel le  terme « fractal » fut  inventé pour désigner tout  objet dépendant  d’échelle.  La con-
comitance  temporelle  de  ces  deux  approches  a  fait  que  les  fractales  sont  presque  passées  inaperçues  en
géographie.  Les  premiers  textes  en  géographie  sur  le  sujet  datent  de  la  fin  des  années  1980  (Dauphiné,
1987 ;  Martin,  1991 ;  Frankhauser,  1994 ;  Dauphiné,  1995).  Ces  travaux  fondateurs  en  géographie
française  n’ont  pourtant  pas  pris  en  compte  l’idée  que  la  fractalité  définissait  de  manière  mathématique
« l’effet  d’échelle »,  et  permettait  de  dépasser  un  problème  insoluble  dans  le  cadre  de  l’analyse  spatiale
classique. De nos jours, la théorie de la relativité d’échelle de Laurent Nottale (1984 ; 1989 ; 1992 ; 1993 ;
1997 ;  1998 ;  2001a ;  2001b ;  2002a ;  2002b ;  2010)  qui  s’appuie  sur  les  travaux  de  Benoît  Mandelbrot
(1975 ; 1982 ; 1997), offre la possibilité de créer des outils permettant un dépassement complet du concept
d’effet d’échelle tout en précisant la totalité de sa portée. La différence fondamentale, s’il fallait en trouver
une, est que Laurent Nottale a défini des espaces mathématiques fractals alors que chez Benoît Mandelbrot,
ce n’était que des objets. De plus, en relativité d’échelle, la fractalité apparaît comme une propriété relative
au sens einsteinien du terme.

3.2. L'approche par la modélisation

Le  modèle  est  une  « représentation  formalisée  et  épurée  du  réel  ou  d’un  système  de  relations »
(Brunet et alii, 1992, p. 334). La géographie a connu un fort développement des modèles depuis les années
1970 grâce au développement de la théorie des systèmes.  Le processus de création d’un modèle s’appelle
modélisation. Il  existe trois types de modélisation en géographie :  la modélisation discursive, la modélisa-
tion graphique et la modélisation mathématique (Durand-Dastès, 1995). Les deux premières ont connu un
réel essor, tandis que la troisième s’est très peu développée.

La  modélisation  mathématique  a-t-elle  une  place  en  géographie ?  La  réponse  à  cette  question  est
très controversée. L’analyse spatiale qui pourtant utilise abondamment la description de ses entités spatiales
par  des  équations  mathématiques,  reste  sceptique  quant  à  la  modélisation  mathématique  stricto  sensu

(Haggett, 1965 ; 1973 ; Dauphiné, 1978 ; 1987 ; 1995 ; Voiron-Caniccio, 1995 ; Brunet, 2001). La géogra-
phie humaniste rejette purement  et  simplement  ce type de modélisation (Lévy et Lussault,  2003 ;  Volvey,
2005). L’objectif de cette partie est de montrer qu’une telle modélisation peut être envisagée en géographie,
à  condition  d’en  comprendre  l’intégralité  de  sa  mise  en  œuvre  et  d’accepter  ses  règles  exigeantes.  Il  faut
avant tout définir ce qu’est un modèle mathématique afin d’en dégager son processus de modélisation et ses
techniques de simulation.
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3.2.1. Définition d'un modèle

Selon Daniel Durand (2002), le terme de modèle s’applique à toute représentation ou transcription
abstraite  d’une  réalité  concrète.  Cette  représentation  doit  être  assez  simplifiée  pour  être  intelligible,  mais
suffisamment  fidèle  pour  être  utile  et  fiable.  C’est  ainsi  que  Peter  Haggett  (1973)  peut  souligner  que  le
modèle  est  économique  car  il  permet  de  transmettre  ce  qu’il  y  a  de  général  dans  l’information  sous  une
forme très condensée. Par ailleurs, Peter Haggett définit  un modèle de la manière suivante :  « a simplified

version of reality built in order to demonstrate certain of the properties of reality » (Haggett, 1965). Tradi-
tionnellement,  on  traduit  cette  phrase  par  « représentation  simplifiée  en  vue  d’une  démonstration »,  mais
Roger  Brunet  (2001)  a  raison  de  rappeler  que  la  définition  de  Peter  Haggett  a  été  mal  traduite.  En  effet,
« demonstrate »  signifie  plutôt  « mettre  en  évidence »  que  « démontrer ».  De  plus,  lorsque  l’on  utilise  la
traduction officielle, on oublie un terme important : « built », c’est-à-dire « construit ». Ainsi, tout modèle,
aussi  réaliste  soit-il,  n’est  qu’un  « reconstruit »,  une  reconstruction  de  la  réalité  dans  le  but  de  prévoir  le
devenir de cette réalité. On peut donc prétendre qu’un « modèle est  une description d’un phénomène […]
qui permet d’en prévoir certains aspects, par exemple son évolution dans le futur, et éventuellement d’expli-
quer  le  phénomène  à  partir  des  phénomènes  plus  simples  ou  de  principes  généraux » (Bertrandias,  1997,
p. 109), l’explication étant donnée par une théorie.

Pour décrire et construire un modèle, il faut un langage ad hoc. Ce langage peut se classer en trois
catégories : le langage discursif, le langage graphique et le langage mathématique (Pumain et Robic, 2002 ;
Durand,  2002).  Le  langage  discursif  permet  de  découvrir  de  nouvelles  connaissances,  mais  il  utilise  un
lexique flou et il manque de rigueur. Ainsi, il dépend fortement de la logique de son concepteur. Le langage
graphique  est  un  peu  plus  rigoureux.  Il  fait  appel  aux  règles  plus  ou  moins  flexibles  de  la  sémiologie.  Il
suppose également, pour être efficace, d’avoir été longuement pensé. Cependant, il demeure généralement
propre  à  celui  qui  a  mis  en  évidence  tel  ou  tel  élément  graphique.  Le  langage  mathématique  est  le  plus
rigoureux.  Toutefois,  il  manque  de  souplesse,  et  quoi  qu’on  en  dise,  il  dépend  aussi  de  son  concepteur,
même s’il utilise un langage qui se veut vérifiable par tous. En effet, si les deux autres langages souffrent
de leur manque de règles, le langage mathématique souffre de son « trop plein de règles ». Malgré tout, il
reste l’unique langage d’une théorie s’organisant en loi, car « le langage mathématique […] est […] utilisé
pour  des  mises  en  ordre  dans  la  réalité  empirique »  (Durand-Dastès,  2001,  p. 40).  Cette  thèse  s’intéresse
avant tout à ce langage, car « le livre de la Nature est écrit en langage mathématique » (Galilée, 1623), mais
elle n’exclura évidemment pas les deux autres, car une science doit manipuler les trois.

On peut nuancer le propos en remarquant que Jean-Paul et Françoise Bertrandias (1997) ignorent le
langage discursif, mais ajoutent ce qu’ils appellent le langage analogique qui permet d’étudier un système
en fonction d’un autre avec lequel il présente des analogies structurelles. En géographie, l’archétype est le
modèle gravitaire appliqué aux populations de villes. Il permet d’expliquer la polarisation des flux humains
vers les villes, c’est-à-dire pourquoi la ville « attire » les Hommes.

On peut donc prétendre que les propriétés du modèle dépendent du langage utilisé. En géographie
(Figure  4),  les  quatre  langages  coexistent,  mais  le  langage  discursif  demeure  celui  qui  est  le  plus  utilisé.
Pour conclure, on peut prétendre qu’un bon modèle peut être décodé dans les quatre langages.
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Langage discursif Langage graphique Langage analogique Langage mathématique

Description d’un

processus en

géographie physique

et humaine

Description d’un

paysage

Description d’un objet

géographique

Carte

Coupe

topographique

Modèle numérique

de terrain

Chorèmes

Automate cellulaire

Système

multi-agent

Modèle gravitaire

Modèles

macroéconomiques

Loi rang-taille

HForriez et Martin, 2007 ;

Forriez et Martin, 2009L
« Lois » de Horton

HForriez et alii, 2009L

Figure 4. Synthèse des différents types de langage en géographie

3.2.1.1. Le modèle discursif

C’est  le  modèle  classique  de  la  géographie  dans  le  sens  où  « géographie » signifie  étymologique-
ment « description de la terre ». Il existe deux manières de décrire le monde. On peut le décrire à la manière
d’un récit le plus complet possible, mais on peut aussi décrire de manière « raisonnée » en sélectionnant les
éléments remarquables observés. On dresse ainsi des typologies.
3.2.1.2. Le modèle graphique

Il  existe  plusieurs  sortes  de  modèles  graphiques :  la  carte,  les  chorèmes  et  les  simulations
informatiques.

† La carte

En  géographie,  c’est  un  modèle  ancien  qui  est  apparu  avec  les  premières  cartes.  La  carte  reste
l’outil  privilégié  du  géographe  pour  représenter  spatialement  les  phénomènes  (Brunet,  2001).  Elle  a  une
fonction qui reste essentiellement un outil dressant un inventaire. En effet, la position permet d’effectuer un
classement, ce qui fait que, classiquement, la carte vient à la fin de l’analyse géographique. Elle réalise une
synthèse d’informations décrites auparavant dans un développement littéraire. Autrement dit, la carte est un
moyen de communication très commode permettant la transmission d’une ou des informations, car l’écrit-
ure graphique est facile à comprendre et à utiliser. Trois symboles suffisent à l’élaboration d’une légende :
le  point,  la  ligne  et  l’aire.  De  plus,  il  faut  qu’une  carte  réponde  à  une  problématique,  ce  qui  n’est  plus
forcément le cas avec les systèmes d’information géographique. Pour conclure, la carte ne peut faire passer
qu’un nombre limité de messages, car l’œil ne peut percevoir qu’au plus 6 à 8 classes de figurés. Toutefois,
la sémiologie reste très rigoureuse, ce qui fait que l’on « ne lit pas une carte aussi facilement qu’un texte »
(Roger Brunet) et « ne fait pas une carte qui veut » (Roger Brunet).

† Les chorèmes

Dans les années 1970, Roger Brunet remarqua que les formes d’organisation sur le globe pouvaient
être modélisées par des structures élémentaires qu’il  appellera chorèmes en 1980. Leur but était  d’essayer
de doter  la géographie (française) d’un langage propre.  Ce fut  une réussite partielle. Nombreux sont ceux
qui ne reconnurent pas en ces symboles les structures élémentaires des phénomènes géographiques. Toute-
fois,  ils  restent  le  modèle  graphique  de  référence,  d’un  point  de  vue  didactique,  en  géographie  (Ferras,
1993).

Les chorèmes sont peu nombreux. Roger Brunet constitua une table de vingt-huit structures élémen-
taires,  appelée  aussi  « socle  chorématique »  ou  « alphabet  du  monde »  (Figure  5).  Elle  correspond  à  un
tableau  à  double  entrée :  en  ligne,  on  trouve  la  forme  des  phénomènes  géographiques  de  base  dus  aux
sociétés ; en colonne, on trouve les configurations géométriques élémentaires (point, ligne, aire et réseau).
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Figure 5. La table des chorèmes de Roger Brunet (Brunet, 1980)

Roger  Brunet  (1990,  p. 118-128)  résume  les  phénomènes  géographiques  en  sept  catégories.  Le
maillage correspond au processus d’appropriation de l’espace, c’est-à-dire au contrôle et à la maîtrise d’un
territoire.  Le  quadrillage  (ou  treillage)  correspond  au  réseau  de  communication.  L’attraction  permet  de
mesurer  l’attractivité  d’un  lieu :  il  existe  des  lieux  plus  attractifs  que  d’autres.  Le  tropisme  renvoie  à  la
notion  de  dissymétrie.  La  dynamique  territoriale  essaye  de  comprendre  l’organisation  propre  de  l’objet
« territoire ».  La  hiérarchie  permet  d’expliquer  l’organisation  spatiale  en  ordonnant  les  objets  géo-
graphiques  avec  des  pondérations  réelles  ou  fictives.  On  peut  également  ajouter  que  la  critique  de  cette
table a été virulente. (1) Où est la place de la dynamique ? (2) Comment modéliser un phénomène d’émer-
gence ? (3) Il y a trop de flèches dans les différents chorèmes.

Malgré  tout,  comme la  carte,  la  modélisation  graphique se  veut  rigoureuse.  Pour  créer  un  modèle
graphique, il  faut partir d’une carte. Il  faut d’abord identifier le principe d’organisation en jeu c’est-à-dire
les structures élémentaires à combiner. Ensuite, il  faut identifier une configuration territoriale, c’est-à-dire
la forme de l’organisation spatiale en construisant un schéma, mais la forme du territoire importe peu. Par
défaut, on utilise le cercle pour représenter ce dernier. Enfin, il faut mettre en avant les particularités et les
singularités  locales.  Le  modèle  final  est  le  résultat  de  la  combinaison  des  structures  élémentaires  et  de  la
confrontation de celles-ci avec des contingences locales. Cependant, ce n’est pas une simple superposition
ou une simple  addition.  Il  faut  combiner  les  chorèmes de sorte que le modèle corresponde au  mieux à ce
que l’on a observé.

Toutefois,  on  peut  rencontrer  un  même  modèle  de  nombreuses  fois  dans  l’espace  géographique.
Dans  ce  cas,  on  peut  construire  un  modèle  intermédiaire  constitué  de  chorèmes  que  l’on  peut  ensuite
adapter  aux  cas  particuliers.  On  appelle  ce  type  de  modèles  graphiques :  chorotypes.  Autrement  dit,  le
chorotype se veut être un modèle général d’un type d’organisation spatiale.
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Cependant,  la  modélisation  graphique par  les  chorèmes  est  vivement  critiquée par  la  communauté
géographique.  Philippe  Cadène  (1992)  souligna  les  deux  problèmes  essentiels  de  la  modélisation
graphique :  (1)  le  problème  de  la  théorie  sous-jacente  des  modèles  graphiques ;  (2)  le  problème  de  la
démarche. Pour Roger Brunet (1968), tout modèle spatial doit reposer sur une théorie sociale. Cependant, il
faut  distinguer  la  théorie  des  modèles  graphiques  (soit  structuraliste,  soit  systémique)  et  la  théorie
économique  et  sociale  sous-jacente  (idéologie).  Cette  position  montre  paradoxalement  la  limite  des
chorèmes  car  les  théories  sociales  sont  généralement  insuffisantes  pour  expliquer  l’espace  géographique.
En effet,  les  chorèmes sont marqués par l’idéologie marxiste. Ils ont été utilisés pour instrumentaliser des
rapports  dominants-dominés.  Par  exemple,  la  ville  domine  la  campagne,  ou  plus  exactement,  la  ville  doit
dominer  la  campagne.  Il  n'est  donc  guère  étonnant  que  devant  le  recul  considérable  du  marxisme  ;  les
chorèmes ont peu à peu été abandonnés par les géographes français.  

En ce qui  concerne la démarche,  on rencontre deux types de difficultés :  (1)  celle de la hiérarchie
entre  les  détails  secondaires  et  les  résidus ;  (2)  celle  de  l’explication  des  règles  de  construction.  En  effet,
comme dans toute modélisation, les détails disparaissent, mais le fait que la construction des chorèmes ne
soit pas une simple addition montre que le problème n’est pas si simple.

On peut alors dresser un tableau (Figure 6) résumant les avantages et les inconvénients de la modéli-
sation  graphique  par  les  chorèmes.  Les  critiques  négatives  étant  plus  nombreuses,  cela  permet  d’affirmer
que les modèles graphiques doivent être réinvestis par les géographes pour être perfectionnés ou abandon-
nés définitivement. Il est difficile de trancher, car leur abandon signifieraient qu'ils n'ont rien apportés à la
géographie, à chacun de se positionner sur cette question. La modélisation graphique par les chorèmes avait
pour  but  d’établir  les  principes  d’organisation  spatiale  en  géographie.  L’objectif  est  bien  de  dépasser  la
contingence  des  lieux.  Cependant,  il  ne  faut  pas  oublier  que  la  table  des  chorèmes  était  provisoire,  mais
comme tout ce qui tarde à être révisé, elle est devenue définitive.
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Avantages - Qualités Inconvénients - Limites Solutions actuelles aux limites

Simplication en formes élémentaires Excès de simplification

Pouvoir de communication de

la modélisation graphique

Hpour donner à voir de

l'information, pour transmettre

et présenter des résultatsL

La question de la différenciation

entre les éléments essentiels et

les détails secondaires HrésidusL

Binôme de la représentation

graphique et du commentaire

qui l'accompagne

Mauvaise utilisation Hexemple :

l'absence de textes explicatifsL

Complémentarité

avec les autres outils de

modélisation en géographie

Mettre en évidence des

régularités de l'organisation de

l'espace : c'est un instrument

d'intelligibilité de l'espace

- Règle de reproductibilité

non respectée

- Caractère irréfutable en

question HsubjectivitéL
-Modèle graphique, vu

comme un « produit fini »

Processus de

construction-déconstruction

qui caractérise toute démarche

de modélisation graphique

Expérimentation Happroche

prospective possibleL
Modélisation graphique propre

à la géographie : elle a été

conçue par des géographes

et pour des géographes

Champ de recherche

à explorer Havancées

méthodologiques possiblesL

- Le problème de l’échelle :

comment emboîter des formes

et comment rendre compte

de l’émergence à une échelle

et de la disparition une autre

- Le problème de la dynamique et

de la profondeur temporelle

- L’inaptitude à rendre

compte des réseaux

- Le retour à une démarche

idiographique

- L’outil ne permet que de

soulever des questions

Hcaractères démonstratifsL
- L’absence de référence à un cadre

théorique Hmétrique et valuation

des structures élémentairesL

- Le jeu d’échelle : un

chorème n’a pas d’échelle

propre mais on peut faire

un jeu d’emboîtement

- L’insertion du temps : soit on

réalise différentes séquences,

soit on adopte la technique

de Christian Grataloup H1996L

Figure 6. Avantages et inconvénients des chorèmes en géographie
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† Principes de l'organisation spatiale en géographie

Il  s’agit  ici  de proposer  quelques éléments de définition  des principes premiers qui  seraient  spéci-
fiques  à  une  démarche  géographique,  et  de  relancer  un  vieux  débat  soulevé  au  Géopoint  de  1980.  Les
principes  géographiques  ne  sont  pas  aussi  affirmés  que  ceux  de  la  physique.  Aussi,  il  faut  formuler  les
principes  géographiques  sous  forme  de  questions  qui  doivent  être  résolues  avant  de  traiter  un  problème
géographique.  La  recherche  de  principes  géographiques  est  de  passer  de  la  question  « comment  où ? »
(modèle) à « pourquoi  où ? » (théorie).  De plus,  cela permettrait  de résoudre partiellement  le  problème de
l’idéologie qu’il peut y avoir derrière la quantification. La mathématisation de ces principes permettrait de
faire  progresser  la  conceptualisation  de  la  géographie,  car  l’invention  de  nouvelles  structures  mathéma-
tiques modifiera les théories géographiques (Figure 7).

Figure 7. La théorie géographique

† Le principe de continuité et finitude

L’interface  terrestre  est-elle  continue  ou  discontinue ?  Est-elle  finie  ou  infinie ?  La  réponse  à  ces
questions reste difficile. C’est plus une question de choix méthodologique.

Traditionnellement,  l’analyse  spatiale  présente  l’interface  terrestre  comme  étant  infinie  et  discon-
tinue. Une discontinuité est une rupture apparaissant dans l’espace ou dans le temps. L’espace est riche en
discontinuités de toutes sortes, marquées par des interfaces, des limites et des frontières. Les discontinuités
peuvent  être :  (1)  franches,  brutales  (une  frontière,  un  mur…)  ou  (2)  progressives,  ménagées  (une  transi-
tion,  une  marge,  une  marche,  une  plage).  Il  existe  deux  types  de  discontinuités :  les  discontinuités
exogènes,  provoquées  de l’extérieur  et  les  discontinuités endogènes,  produites par  le  processus lui-même,
par le fonctionnement du système, sans intervention directe de l’environnement. Dans de nombreux cas, les
discontinuités  apparaissent  dans  l’étagement  des  phénomènes  géographiques  en  altitude.  La  discontinuité
endogène  rétablit  une  forme  de  continuité  là  où  l’on  voit  souvent  une  rupture  inexplicable  ou  jugée
exogène.  D’après Roger  Brunet,  l’espace géographique comporte quatre grandes  sortes de discontinuités :
(1) toutes celles qui sont associées à l’approximation, aux maillages ; (2) toutes celles qui résultent du jeu
des  principales  lois  de  l’espace ;  (3)  toutes  les  lignes  de  contact  (ou  interface) ;  (4)  toutes  les  limites  de
contrées qui marquent le passage d’un système spatial à un autre.
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Toutefois, on se rend bien compte aujourd’hui que l’interface terrestre est finie. C’est une évidence
géométriquement.  La  terre  présente  une  surface  « sphérique ».  Cependant,  paradoxalement,  l’Homme
ressent cet espace géographique de manière infinie, or l’interface terrestre n’est qu’une bande coincée entre
le  manteau  et  l’atmosphère.  Elle  reste  un  espace  continu.  Cependant,  bien  qu’ayant  cette  qualité,  elle  est
partitionnée par des discontinuités anthropiques et physiques. Comment émergent de telles discontinuités ?
Les  processus  spatiaux  ont  toujours  été  envisagés  de  manière  purement  descriptive  soit  par  des  modèles
discursifs, soit par des modèles mathématiques. Pour ces derniers, il n’y a jamais eu réellement d’analyse,
au sens mathématique du terme. Pourquoi ? La réponse est simple :  aucun outil ne permet de quantifier et

d’analyser ces processus spatiaux. On verra par la suite qu’un espoir est permis grâce à l’analyse fractale@1D
qui tentera de montrer que la discontinuité émerge du continu.

Enfin, la Terre présente une surface finie, mais non bornée, face à laquelle les Hommes ne peuvent
rien, sauf s’ils parviennent, un jour, à organiser des voyages interplanétaires ou intergalactiques. Les fronts
pionniers  vont  donc  disparaître.  Nous  sommes  alors  dans  une  logique  de  fonctionnement  complètement
paradoxale  d’infinité  reposant  sur  la  surface,  alors  que,  manifestement,  nous  sommes  en  réalité  dans  une
logique finie.  Dès lors,  comment  organiser  autrement  la  Terre ? Il  n’y a plus qu’une seule solution :  c’est
« conquérir » l’espace des  échelles (terrestres)  qui  lui  est  réellement  infini,  dans la  mesure  où l’on pourra
toujours créer un niveau intermédiaire plus ou moins pertinent. Il faut souligner que la géographie a tout de
même été  pionnière dans  les  raisonnements  d’emboîtement  d’échelles  et  d’effets  d’échelle.  Elle  a  montré
que  la  seule  manière  d’organiser  les  territoires,  au  sens  très  large  du  terme,  à  l’heure  actuelle,  était  de
favoriser  le  partenariat  des  différents  acteurs  qui  interviennent  à  différentes  échelles.  Autrement  dit,  un
nouveau « front pionnier » se met en marche : la conquête, ou plus précisément, la maîtrise des échelles.

Cependant, la conquête des échelles ne concerne plus uniquement la géographie. La découverte des
fractales a ouvert un important champ transdisciplinaire qui montre que tous les phénomènes naturels et/ou
anthropiques  prennent  des  formes  fractales  issues  de  dynamiques  chaotiques,  qui  ont  été  démontrées  par
Laurent Nottale comme étant inévitables. Même si ces courants tendent à s’essouffler aujourd’hui, il  n’en
reste pas moins qu’ils ont mis en évidence toute sorte de règles d’échelle. Cette thèse se propose d’aller au-
delà de ces approches à la lumière de la relativité d’échelle de Laurent Nottale.

Pour  conclure,  l’Humanité,  si  elle  veut  survivre,  n’aura  pas  d’autres  choix  que  de  se  partager  les
maigres ressources de notre planète, mais aussi, de commencer à apprendre à vivre avec la Nature, surtout
dans les sociétés occidentales. Celles-ci ont dès lors une énorme responsabilité :  il  faut qu’elles admettent
que le modèle  tant  admiré par  de nombreux pays en voie de développement,  est  certainement  le pire qui
soit pour l’avenir de l’espèce humaine à moyen et long terme. En effet, certains spécialistes avancent l’idée
que si la planète entière vivait en suivant les mêmes us et coutumes que l’Occident, il faudrait deux ou trois
planètes  pour  subvenir  à  la  demande globale.  Il  est  donc urgent  de  modifier  notre  approche de  la  gestion
des territoires.  Le géographe deviendrait  alors  le  porte-parole et  le  chercheur par excellence de cette nou-
velle  philosophie  du  monde,  surtout  à  l’heure  de  la  mondialisation.  Définir  un  principe  de  continuité  et
d’infinitude serait donc le bienvenu en géographie.
† Le principe d'anisotropie et d'hétérogénéité

Il  s’agit de notions mathématiques précises. Isotrope signifie que toutes les directions sont équiva-
lentes.  L’espace  isotrope  est  un  espace  idéal,  non  dissymétrique,  non  orienté,  non  différencié,  qui  est
parfois  introduit  dans  la  réflexion  théorique  des  économistes.  De  manière  plus  rigoureuse,  l’isotropie
correspond à une invariance sous les rotations. A contrario, anisotrope signifie que toutes les directions ne
se « valent » pas. En règle générale, la géographie est  contrainte de poser comme hypothèse fondamentale
l’anisotropie de son espace, même dans la modélisation.
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Homogène signifie de même origine. Un espace homogène est défini par des parties qui se ressem-
blent, ou forment un tout, quelles que soient leurs origines. De manière plus mathématique, l’homogénéité
se  définit  par  une  invariance  sous  les  translations.  Par  contre,  hétérogène  signifie  qui  a  une  autre  nature.
L’espace  hétérogène  désigne  ce  qui  est  fait  de  parties  de  nature  différente  et  peu  liées,  ce  qui  manque
d’unité. Le choix est plus délicat.

Toutefois, en géographie, on étudie les deux aspects. Par exemple, pour les automates cellulaires ou
pour  les  systèmes  multi-agents,  l’espace  de  départ  est  isotrope  et  homogène.  Puis,  progressivement,  il
devient  anisotrope  et  hétérogène.  Un  problème  épistémologique  se  pose  alors  sur  l’origine  de  cette
anisotropie de l’espace géographique :  soit, au départ, il  était isotrope et homogène, soit il  était anisotrope
et homogène dès le début (ce qui est peu probable, mais reste possible).

Aussi, il est difficile d’ériger en principe géographique les notions de continuité - discontinuité, de
finitude - infinité,  d’isotropie - anisotropie  et  d’homogénéité - hétérogénéité.  Il  faut,  comme  la  physique,
étudier l’espace géographique à la lumière des couples possibles.
† Le principe d'interaction (ou des actions réciproques)

Le mouvement est une variation au cours du temps de la position. Il s’oppose au terme statique qui
désigne  les  positions  fixes.  La  mesure  du  mouvement  s’effectue  par  la  vitesse,  elle-même  complétée  par
l’accélération qui correspond à une variation des vitesses. A contrario, en géographie, la position des lieux
est « fixe », mais le temps s’écoule, à quelques exceptions près comme la dérive des continents ou l’aban-
don d’un lieu par l’homme (Durand-Dastès, 1984).

À l’origine, la dynamique désigne la physique des forces et des accélérations. Elle se décompose en
deux : la cinématique qui étudie le mouvement et  la statique qui étudie l’immobilisme. L’objectif  des lois
de la dynamique est  de déduire le  mouvement  des  corps à partir  de la  connaissance des forces s’exerçant
sur  eux  et  des  conditions  initiales  du  mouvement.  La  dynamique  est  fondée  sur  l’axiome  suivant :  tout
changement de lieux se produit uniquement dans le temps. Autrement dit, tout mouvement est un change-
ment continu de lieu auquel correspondent des valeurs du temps variant également d’une manière continue.
Les trois lois de la dynamique ont été formulées par Isaac Newton. La première loi d’Isaac Newton énonce
le  principe  de  l’inertie.  La  seconde  loi  précise  que,  dans  un  référentiel  galiléen,  la  somme  des

forces extérieures@2D est égale à l’accélération pondérée par la masse.

L’action se définit par le fait que des objets exercent des forces les unes sur les autres, et les forces
sont des causes de déformation, de mouvement ou de propagation. A contrario, l’interaction se définit par
des actions réciproques. Elle s’exerce soit par un contact direct, soit à distance. Si deux corps A et B sont
en contact, l’action de A sur B s’accompagne toujours de l’action de B sur A, que les corps soient immo-
biles ou  en  mouvement.  Autrement  dit,  mathématiquement,  lorsqu’un corps  A exerce  sur  un  corps  B une
force F de A sur B, le corps B exerce une force F de B sur A telle que FAÆB = - FBÆA.

Cette  règle  a  été  importée  en  sciences  humaines  via  l’économiste  William  J.  Reilly  (1931).  Il
proposa  un  modèle  dit  gravitaire  pour  expliquer  les  échanges  commerciaux  entre  plusieurs  villes.  Les
échanges commerciaux entre la ville A et ses villes intermédiaires, ou par analogie, ses satellites, ainsi que
ceux entre la ville B et ses villes intermédiaires, sont notés respectivement BA et BB. Ceux-ci sont reliés aux
nombres  d’habitants  de  chacune  de  ces  villes  (notés  respectivement  PA  et  PB)  et  aux  distances  moyennes
entre les villes A et B avec leurs villes intermédiaires respectives (DA et DB) par la formule suivante :

BA

BB
 = J PA

PB
NN DB

DA

n

où  N  et  n  représentent  la  sensibilité  de  la  dépendance  des  échanges  commerciaux  avec  les  prédictions
individuelles (Reilly, 1931).
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Cette formule fut corrigée par Paul D. Converse (1948) qui introduit la distance DAB entre la ville A
et la ville B. Cela permet, selon lui, de définir la limite BPD entre la zone d’attraction de la ville A et celle
de la ville B.

BPD = 
DAB

1 +
PA

PB

De plus, il  introduit  dans la formule de William J. Reilly ce qu’il  appelle un « facteur d’inertie » valant 4
qui détermine la part des échanges entre la ville A et la ville B :

BA

BB
 = J PA

PB
NK 4

d
O

2

où d représente une certaine distance à l’extérieur de la ville.

Walter Isard (1956) proposa un modèle plus proche de la loi d’Isaac Newton. Peter Haggett (1973)
importa ce modèle en géographie. Chaque ville possède une « force d’attraction » F différente :

FAö B = a1
PA PB

DAB
g1

FBö A = a2
PA PB

DAB
g2

où an et gn (n = {1, 2}) représentent les paramètres du modèle. Il est important de noter que le paramètre g
peut être différent de 2, à la différence du modèle d’Isaac Newton. De plus, en règle générale, FAÆB et FBÆA

ne sont pas identiques (Pumain et Saint-Julien, 2001). Ce modèle a été érigé en principe en géographie. Le
principe  d’interaction  permet  d’étudier  l’arrangement  entre  les  lieux.  Ainsi,  « tout  ce  qui  se  trouve  ou  se
passe dans un lieu donné est en partie déterminé par tout ce qui se passe ou se trouve dans un ensemble de
lieux en relation avec le lieu considéré » (Durand-Dastès, 1990).

Cependant,  d’autres  modèles  gravitaires  dits  « probabilistes »  existent.  Par  exemple,  David  Huff
(1964) construisit un modèle probabiliste à l’échelle intra-urbaine :

pAB = 
SB

TAB
n  ä 1

⁄B = 1
m SB

TAB

n

où pAB  représente la probabilité qu’un consommateur fasse le trajet  entre un point A et un centre commer-
cial B. TAB correspond au temps de trajet entre ces deux points ; SB à la superficie du centre commercial B ;
n au facteur de sensibilité.

William C. Black (1987), quant à lui, définit pAB de la manière suivante :

pAB = 
p AAB

N pDAB
n

⁄
k=1

m Hp AABk pDABkL

où A  représente les  facteurs d’attraction  comme la  taille  et  l’apparence du  commerce et  D  les  facteurs de
répulsion comme le temps du trajet ou le prix.

Enfin,  Barry J.  Babin  et  alii  (1991)  proposèrent  de  revenir  sur  le  modèle  de  William J.  Reilly en
remplaçant la population par l’attractivité A  et  la distance moyenne par le coût moyen C associé au choix
du centre :

BA

BB
 = J AA

AB
NNJ CB

CA
Nn

.
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Tous ces modèles gravitaires ont le même défaut : la connaissance du centre est a priori. Le mod-
élisateur décide où se localise ses centres (ou ses pôles), et ensuite, ils les comparent entre eux, les autres
localisations étant par défaut des satellites. Dans les chapitres suivants, cette thèse essayera de proposer une
méthode pour déduire la position des pôles dans un espace géographique.

† Les modèles graphiques

Dans les années 1990, avec la généralisation des ordinateurs, des outils de modélisation graphique
beaucoup plus puissants  sont  apparus.  Les modèles numériques d’élévation et/ou de terrain  ont permis de
mieux  appréhender  les  reliefs  que  la  carte  topographique.  En  même  temps,  sont  apparus  les  automates
cellulaires et  les systèmes multi-agents.  Certes, ils possèdent une interface numérique, mais ils demeurent
avant tout utilisés pour leur interface graphique.
3.2.1.3. Le modèle analogique

Dans  les  années  1960,  la  géographie  a  développé  des  axes  analogiques  importants  avec  d’autres
disciplines.  Le  cas  d’école  est  bien  sûr  le  modèle  gravitaire  d’Isaac  Newton :  deux  villes  « s’attirent »
proportionnellement  à  leur  population  et  à  l’inverse  du  carré  de  la  distance  qui  les  sépare  (Reilly,  1931).
Analogie qui s’est montrée plus ou moins pertinente, mais elle s’est mainte fois avérée utile, par défaut.
3.2.1.4. Le modèle mathématique

« Un  modèle  mathématique  d’une  certaine  réalité  ou  d’un  certain  système  se  caractérise  comme
l’ensemble  des  variables  choisies  pour  la  description  et  les  relations  mathématiques  qu’elles  présentent
entre elles » (Bertrandias, 1997, p. 111). Au final, un modèle doit prévoir certaines variables au moyen de
calculs,  de  dessins  ou  du  fonctionnement  d’un  mécanisme  analogue.  Toutefois,  il  doit  aussi  expliquer  le
phénomène  étudié  au  moyen  d’hypothèses,  de  principes  généraux  [c’est-à-dire  les  principes  premiers]  ou
par coordination de mécanismes simples, ce qu’offre le modèle mathématique. Ainsi, « le langage mathéma-
tique  permet  d’organiser  et  de  relier  les  lois  intervenant  dans  un  modèle.  Certaines  lois  élémentaires
(comportement  des  éléments  indécomposables  du  système)  ou  fondamentales  (conservation  […]  [de  cer-
taines  quantités])  sont  prises  comme point  de  départ  et  forment  les  hypothèses  de  base  et  les  axiomes du
modèle.  A  partir  de  ces  lois,  d’autres  lois  sont  obtenues  comme  résultat  de  calculs  ou  de  raisonnements
utilisant  les  règles  algébriques  habituelles  (opérations  sur  les  entiers,  plus  généralement  sur  les  types,
évaluation ou transformation des expressions) complétées par les notions d’analyse […] (dérivation, intégra-
tion, passage à la limite) » (Bertrandias, 1997, p. 111). C’est de là que l’on tire « la puissance des modèles
mathématiques  [qui]  tient  à  l’aide  apportée  par  les  concepts  spécifiquement  mathématiques  (nombre,
fonctions,  limites  par  exemple)  mais  aussi  au  langage  mathématique  lui-même  dans  sa  syntaxe
(numérotation de position, forme des expressions, notation différentielle par exemple) » (Bertrandias, 1997,
p. 111). Autrement dit, il ne suffit pas de poser une équation mathématique pour avoir un modèle mathéma-
tique. Le modèle mathématique ne doit donc pas être associé systématiquement à une mise en équation.

En géographie, le modèle mathématique n’existe presque pas (Franc, 2001). Il faut donc largement
l’explorer.  Avec,  toutefois,  une  réserve  formulée  par  André  Dauphiné,  « si  les  mathématiques,  mal  util-
isées, peuvent entraîner une sclérose, un appauvrissement des concepts, elles peuvent inversement enrichir
des  concepts  flous,  et  permettre  le  passage  du  construit  au  concept » (Dauphiné,  1978,  p. 20).  C’est  dans
cette optique qu’il faut comprendre les développements récents sur la loi rang - population urbaine (Forriez
et Martin, 2007 ; Forriez et  Martin, 2009) et  les travaux de Philippe Martin sur les reliefs (Martin, 1997 ;
2004 ; 2005 ; 2006b ; 2006c ; 2008c ; 2009).

3.2.2. La modélisation mathématique

La  modélisation  mathématique  est  une  modélisation  particulière,  mais  elle  respecte  les  grandes
règles  de  construction  connues  des  géographes,  auxquelles  il  faut  ajouter  la  rigueur  du  langage
mathématique.
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3.2.2.1. Étapes préliminaires à la modélisation mathématique

Les étapes préliminaires à la modélisation mathématique sont au nombre de deux. (1) On crée des
variables  quantifiées  et  quantifiables  de  grandeurs  considérées  comme  étant  importantes.  Leurs  valeurs
respectives  sont  le  résultat  de  mesures  ou  d’observations.  (2)  On  recherche  des  relations  mathématiques
entre ces variables, fondées sur des principes premiers (c’est-à-dire universels) et fondamentaux.

Ces  relations  deviennent  des  lois  si  on  peut  les  formuler  au  moyen  d’objets  mathématiques.  Une
fois qu’une fonction unifiant les  variables entre elles (la plus simple possible) a  été identifiée, on peut lui
appliquer toutes les règles mathématiques connues pour trouver ses différentes formes, et surtout compren-
dre les  différents rapports  qui existent entre ces formes mathématiques. On appelle cet ensemble de fonc-
tions reliées un modèle mathématique. Il  est  important de noter que c’est  ce modèle qui  doit  s’adapter  au
phénomène  géographique  étudié,  et  non  l’inverse.  La  loi  rang-taille  appliquée  à  la  hiérarchisation  de  la
population urbaine fournit un bon exemple de ce qu’il ne faut pas faire. Durant une vingtaine d’années, les
utilisateurs se sont bornés à rechercher une droite de régression dans l’espace du logarithme de l’inverse du
rang (présenté dans un ordre décroissant) versus le logarithme de la population, or il est apparu récemment
(Rosen  et  Resnick,  1980 ;  Laherrère,  1996 ;  Forriez  et  Martin,  2007,  Forriez  et  Martin,  2009)  que le  bon
modèle  pour  les  données  de  2000  du  réseau  urbain  mondial,  par  exemple,  était  un  polynôme  du  second
degré caractérisé par  une demi parabole. Cet  exemple montre qu’il  faut toujours partir  des données, et  ne
jamais appliquer, en première étape, un modèle mathématique préconçu.
3.2.2.2. Typologie des modèles

Les modèles se classent en une double typologie (Figure 8). Ils sont soit descriptifs, soit explicatifs.
Ils  sont  soit  déterministes,  soit  aléatoires.  Il  est  important  de  noter  qu’un  modèle  aléatoire  ne  signifie  en
aucune façon que le modèle ne soit pas nomothétique car, formellement, il obéit aux lois de la statistique et
des probabilités.

Modèle déterministe Modèle probabiliste

Modèle descriptif
Modèle mathématique

descriptif
Statistique descriptive

Modèle explicatif
Modèle mathématique

prédictif
Statistique quantique

Figure 8. Double typologie des modèles

Le modèle déterministe fait souvent appel aux équations différentielles ou à un système différentiel.
Il  correspond  à  une  ou  plusieurs  variables.  Dans  ce  type  de  modèle,  le  hasard  n’intervient  pas :  aucun
facteur  ne  peut  perturber  le  modèle.  De  ce  fait,  ce  modèle  n’existe  presque  pas  en  géographie.  Il  existe
quelques  modèles  déterministes  en  géographie  physique,  mais  il  est  évident  qu’en  géographie  humaine,
cela n’a guère de sens.

Le  modèle  probabiliste  se  fonde,  quant  à  lui,  plutôt  sur  les  probabilités  et  les  variables  aléatoires,
utilisables grâce aux estimations et aux tests statistiques. Le plus évolué est le modèle quantique qui permet
d’obtenir des statistiques explicatives de phénomènes spatiaux, temporels et spatio-temporels.

La  distinction  n’est  peut-être  qu’une  approximation,  car  il  existe  des  évolutions  déterministes  et
causales au cours du temps d’une densité de probabilité. Dans ce cas, les  deux peuvent  être combinés, ce
qui correspondra un « déterminisme de structure » (Nottale et alii, 2009).
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3.2.2.3. Processus de la modélisation mathématique

On peut résumer ce processus en cinq grandes étapes qui sont :

1.  le choix des variables ;
2.  la formulation du modèle ;
3.  l’identification des paramètres ;
4.  la validation du modèle ;
5.  l’extension à des situations générales.

« La modélisation d’un phénomène commence dès le choix des aspects qu’on choisit de considérer
ensemble  et  qu’on  regroupe  souvent  en  un  système :  un  état  du  système  est  caractérisé  par  les  valeurs
présentes  ou  passées  de  variables  qu’on  appelle  variable  d’état  et  l’interaction  du  système  avec  d’autres
réalités est précisé par des variables d’entrée et des variables de sortie. En général, le système évolue dans
le  temps  et  passe  d’un  état  à  un  autre  sous  l’effet  des  variables  d’entrée :  si  le  nouvel  état  est  défini  de
manière prévisible et unique à partir  des valeurs des variables dans l’état  précédent, on dit que le système
est déterministe » (Bertrandias, 1997, p. 109), ce qui introduit bien le processus de modélisation.

† Le choix des variables

Le  choix  des  variables  reste  l’opération  la  plus  délicate.  En  général,  le  choix  s’opère  de  manière
aléatoire.  On choisit  telles  ou telles variables quantitatives parce qu’on les a « sous la main ».  Cependant,
lorsqu’on a le choix, il faut distinguer les variables importantes des variables négligeables.

De plus, il existe deux types de variables : les variables qui peuvent être mises à jour dont la valeur
est  observable  et  contrôlable,  et  les  variables  exprimées  en  fonction  de  variables  plus  simples  ou  plus
accessibles (par exemple le rang dans les lois rang - taille à la place de la localisation géographique).

† La formulation du modèle

La  formulation  du  modèle  s’effectue  dans  un  langage  précis  dont  il  ne  faudra  jamais  oublier  les
limites.  En modélisation mathématique,  la  formulation correspond à la  mise en équation.  Celle-ci  est  loin
d’être simple car il n’existe aucune méthode universelle. Toutefois, la technique la plus employée reste de
poser des hypothèses « parfaites » et de formuler la ou les équations dans le langage d’une théorie mathéma-
tique pertinente, et ensuite de complexifier les équations pour essayer de se rapprocher de la réalité.

† L'identification des paramètres

« Un  modèle  est  souvent  susceptible  de  s’adapter  à  plusieurs  situations  réelles,  chaque  situation
particulière étant caractérisée par les valeurs de variables appelées paramètres. Dans le processus de modéli-
sation, l’adaptation à telle situation précise est la phase d’identification : comment déterminer (c’est-à-dire
identifier) les paramètres du modèle ? » (Bertrandias, 1997, p. 110).  En effet,  la plupart  du temps, ce sont
des  constantes.  Ce  sont  des  valeurs  que  l’on  ne  peut  expliquer,  mais  elles  sont  indispensables  à  la  perti-
nence du modèle.  Elles correspondent  souvent  à une application à un  cas pratique d’un modèle purement
théorique.

† La validation du modèle

Cette validation s’opère en comparant le modèle avec la réalité. Le modèle est-il adapté à la situa-
tion étudiée ? Les écarts avec le modèle sont-ils acceptables ou doit-on changer de modèle ? La loi rang -
population urbaine fournit  une nouvelle fois  un bon exemple.  Le modèle « droite de régression dans l’es-
pace [ln(1/r), ln(P)] ne fonctionnant presque jamais, car les écarts étaient trop importants entre la réalité et
le  modèle,  le  modèle  « parabole  en  [ln(1/r), ln(P)] »  a  pu  être  validé  (Forriez  et  Martin,  2007,  Forriez  et
Martin, 2009).
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† L'extension du modèle

L’extension du modèle cherche à répondre à la question suivante. « En tenant compte de variables
supplémentaires  jusqu’alors  négligées  ou  en  raffinant  les  mesures  et  les  observations,  peut-on  adapter  le
modèle à une situation plus complexe ou à un niveau d’observation plus fin ? » (Bertrandias, 1997, p. 110).
Cette  étape  peut  être  l’occasion  de  préciser  certains  paramètres,  c’est-à-dire  de  théoriser  davantage  le
modèle. Ainsi, le modèle s’approchera de plus en plus de la réalité observée.
3.2.2.4. La simulation

La  simulation  numérique  est  une  étape  importante  qui  achève  généralement  une  modélisation
mathématique. En effet, après la modélisation qui est un processus purement théorique, elle permet d’éprou-
ver un modèle. Elle n’est pas propre à la modélisation mathématique, mais avec le développement fulgurant
de l’informatique ces dernières années, elle permet de tester des modèles mathématiques, comme jamais ils
n’ont pu l’être. En géographie, la simulation est surtout utilisée abondamment pour tester un système multi-
agent ou un automate cellulaire (White, 1998 ; White et Engelen, 1993 ; 1997).
3.2.2.5. La théorisation

Précédemment, on avait précisé que les paramètres d’un modèle étaient des constantes que l’on ne
peut  expliquer.  La  théorisation  est  le  processus  (mathématique)  permettant  de  justifier,  et  surtout  de
prédire, la valeur de ces constantes, souvent à partir de mesures indépendantes. En géographie, cela n’existe
pas encore, mais aujourd’hui il semblerait que cela devienne une réalité, du moins en géographie physique
grâce aux travaux de Philippe Martin  et  de Laurent  Nottale. On peut  donc dire que l’explication des con-
stantes  engendre  une  nouvelle  théorie  scientifique.  Ainsi,  « une  théorie  scientifique  n’est  rien  d’autre
qu’une représentation mathématique, dans les formules, des équations et des règles de correspondance des
objets physiques qu’on veut étudier et des comportements qu’ils vont avoir dans différentes circonstances »
(Zwirn, 2006, p. 52).

3.2.3. La modélisation mathématique est-elle possible en géographie ?

Tout au long des paragraphes précédents, la quasi-inexistence de la modélisation mathématique en
géographie a  été  montrée.  La raison est  fort  simple.  Le géographe privilégie les  démarches  inductives,  ce
qui, bien sûr, va a contrario de la modélisation mathématique qui trouve sa justification dans la démarche
déductive.  Nous  avons  également  insisté  sur  la  puissance  de  cette  modélisation.  On crée  une  loi  de  toute
pièce,  et  on  vérifie  si  elle  fonctionne  dans  les  cas  observés.  La  géographie  peut  commencer  à  s’engager
dans cette voie, car elle possède désormais suffisamment des quantités de variables localisées ou qui dépen-
dent  de  la  localisation.  On peut  donc parfaitement  créer  des  lois  où  la variable spatiale  est  infinitésimale,
par exemple, et  vérifier si elle fonctionne. Toutefois, il  ne faut pas oublier que la nature mathématique de
l’espace  géographique  est  fractal,  ce  qui  pourrait  impliquer  dans  certaines  situations  et  sous  certaines
conditions  restrictives  une  dynamique  de  type  quantique,  et  non  classique  (Forriez,  2007).  Cette  variable
spatiale dépendra donc explicitement de sa résolution. C’est en s’engageant dans cette voie que la géogra-
phie pourra affirmer son statut de science originale et  autonome. Cela sera douloureux ; cela suscitera des
craintes  et  des  doutes,  mais  la  quantification  en  analyse  spatiale  en  sortira  grandie.  De  plus,  l’approche
relativiste au sens einsteinien du terme a souvent été adoptée sans le savoir en géographie.
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3.3. L'approche relativiste

La première approche naturelle de l’espace géographique reste de le considérer comme lisse, c’est-à-
dire de le penser avec des figures, des objets, des espaces euclidiens (carré, cercle, pavé, cylindre, etc.), or
paradoxalement,  ces  êtres  géométriques  caractérisent  très  mal  l’espace  géographique.  Ainsi,  pourquoi
continuer à considérer les objets et/ou l’espace géographique par ce qu’ils ne sont pas ? La terre n’est pas
une boule lisse dénuée de rugosité. Comment donc la caractériser ?

3.3.1. La nature de l'espace géographique

Fondamentalement, il existe deux couples possibles. L’espace est soit homogène, soit hétérogène et
soit isotrope, soit anisotrope (cf. paragraphe 3.2.1.2.).
3.3.1.1. Homogène et isotrope

Homogène  et  isotrope  ont  été  défini  précédemment.  En  règle  générale,  un  espace  homogène  est
isotrope, ce qui signifie que toutes les directions sont  équivalentes. Il  n’y a donc pas de rugosité. Pendant
longtemps la plupart des modèles géographiques ont été fondés sur ces concepts. Parmi les modèles les plus
célèbres, on peut citer les modèles de Johann van Thünen, le modèle de Walter Christaller.

Plus récemment, Roger Brunet (1980) a renouvelé le genre avec les chorèmes et la chorématique. Il
admet  pour  construire  sa  chorématique  une  hypothèse  extrêmement  forte :  l’espace  géographique  est
fondamentalement  isotrope et  homogène.  Comme cela  a  déjà  été  signalé,  cette  nature  de  l’espace  peut  se
résumer en vingt-huit formes élémentaires appelées chorèmes (Figure 5). Selon lui, la combinaison de ces
formes simples explique alors le caractère apparent de l’espace géographique, à savoir la nature anisotrope
et hétérogène.
3.3.1.2. Hétérogène et anisotrope

Dans un  espace hétérogène,  la  densité de l’objet  considéré  varie en fonction  de la surface consid-
érée ;  elle  dépend  donc  de  l’échelle  d’observation.  La  position  défendue  ici  est  de  prendre  l’hypothèse
inverse  de  Roger  Brunet,  à  savoir  que  l’espace  géographique  est  fondamentalement  anisotrope  et
hétérogène. Pour être clair dès le début, il ne s’agit pas de prétendre que la démarche de Roger Brunet n’ait
aucun  intérêt,  bien  au  contraire,  ce  raisonnement  inverse  va  permettre  de  l’enrichir  considérablement.  Si
l’espace  est  rugueux  par  définition,  quel  est  l’outil  le  plus  simple  pour  le  représenter ?  En  fait,  lorsque
Roger Brunet établit  sa théorie des discontinuités, la théorie des fractale est apparue de manière concomi-
tante.  Autrement  dit,  l’outil  permettant  de  décrire  des  phénomènes  anisotropes  et  hétérogènes  n’a  pas  pu
l’inspirer.  En  effet,  la  géométrie  fractale  amène  à  étudier  directement  l’anisotropie  et  l’hétérogénéité.
Toutefois,  les fractales étaient  peu fonctionnelles en géographie, car  leur  définition sous forme d’objet  ne
permettait pas une bonne application du concept. Ainsi, il faut passer à une position relativiste telle que le
propose Laurent Nottale (Nottale, 1984 ; 1989 ; 1992).
3.3.1.3. Continu ou discontinu

Si  les  couples  homogène  -  hétérogène  et  isotrope  -  anisotrope  sont  facilement  perceptibles,  le
couple continu - discontinu l’est beaucoup moins. C’est pourtant selon Roger Brunet (1968) le concept clé
de  la  géographie.  Il  faut  tout  de  suite  préciser  qu’un  espace  peut  être  continu,  anisotrope  et  hétérogène
(montagne,  organisation  d’une  ville) ;  discontinu,  anisotrope  et  hétérogène  (archipel,  réseau  urbain) ;
continu,  isotrope  et  homogène  (villes  américaines,  boule  de  billard,  courbe  de  Van  Koch) ;  discontinu,
isotrope et homogène (tapis de Sierpinski, ensemble triadique de Cantor, graphique de la fonction inverse).
Pour  les  deux  derniers,  il  est  difficile  de  trouver  des  archétypes géographiques,  même si  on les  rencontre
abondamment.
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3.3.1.4. Synthèse : l'émergence des limites

Les trois couples possibles permettant la description de l’espace géographique sont intimement liés
à  l’échelle  d’observation :  généralement,  plus  l’échelle  est  fine,  plus  l’objet  sera  discontinu,  anisotrope et
hétérogène.  A  contrario,  plus  l’échelle  sera  grossière,  plus  l’objet  sera  continu,  isotrope  et  homogène.
Toutefois, le problème n’est pas si simple, car si l’objet géographique devient certes continu, il n’en est rien
de l’espace géographique. Par exemple, à l’échelle planétaire, les grandes structures urbaines peuvent être
représentées  par  des  taches  qui  sont  continues  si  on  les  considère  comme  des  objets  indépendants,  mais
l’ensemble de ces taches forme un espace géographique discontinu.

On arrive à l’idée que limites d’un objet, espace, continuité - discontinuité, isotropie - anisotropie et
homogénéité - hétérogénéité sont des notions fondamentalement liées à l’échelle d’observation (chapitre 2 ;
Béguin et Pumain, 1994, p. 13-18). Autrement dit,  tous ces concepts sont relatifs à la résolution. De plus,
selon les situations et les localisations, le modélisateur spatial choisira l’un ou l’autre de ces concepts dans
l’un de ces deux couples. Ainsi, ce choix peut s’effectuer :

1. en fonction de son échelle. Cela permet de rappeler que la base de la fractalité est l’étude de
l’apparition  et  de  la  disparition  d’une  structure  spatiale  en  fonction  de  son  échelle  qui  se
traduit  généralement  par  un  jeu  d’emboîtement  d’échelle  qui  est  parfaitement  modélisable
de manière mathématique ;

2. en  fonction  de  critères  personnels.  La  frontière  empirique  entre  homogénéité  et
hétérogénéité et entre isotropie et anisotropie est extrêmement flexible. Chacun possède un
regard  différent  de  la  même  situation :  l’un  va  percevoir  une  hétérogénéité,  l’autre  une
homogénéité pour des raisons logico-culturelles différentes.

Ainsi, un des enjeux de l’analyse spatiale est de trouver des techniques qui permettent d’objectiver
ce  choix.  Pour  comprendre  la  morphogenèse  d’un  objet  -  espace  géographique,  il  faut  nécessairement
adopter une position relativiste au sens einsteinien du terme.

Figure 9. Objet géographique et résolution (Cuénin, 1972)
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3.3.2. La position relativiste

L’idée d’introduire la notion de « relativité » en géographie est déjà relativement ancienne (Brunet,
1990 ;  Parrochia,  2006).  Toutefois,  comment  appliquer  la  théorie  de  la  relativité  à  un  espace  géo-
graphique ?  Daniel  Parrochia  (2006)  réalise  une  excellente  synthèse  sur  la  mise  en  œuvre  intuitive  du
principe  de  relativité  en  géographie.  Toutefois,  il  ne  faut  pas  confondre  relativisme  et  relativité.  Le  rela-
tivisme est  une  philosophie qui  prétend  que tout  est  relatif.  En  fait,  il  s’agit  d’un  cliché posé  par  la  post-
modernité. Par contre, « ce qu’affirme le principe de relativité, c’est qu’il existe certaines grandeurs partic-
ulières,  caractérisant  l’état  du  système  de  coordonnées,  grandeurs  qui  ne  peuvent  jamais  être  définies  de
manière absolue. En un sens plus général encore, on peut dire que ces grandeurs réalisent l’interface entre
nous et  le  monde extérieur,  sur  lequel  nous  voulons effectuer  des  mesures » (Nottale,  1998,  p. 103).  « La
relativité consiste en fait en une recherche de l’universel à travers une analyse du relatif » (Nottale, 1998,
p. 104).  La  relativité  est  donc  un  principe  philosophique  très  général  qui  peut  se  formuler  de  la  manière
suivante : « toute chose est définie relativement à un système de référence », c’est-à-dire qu’il faut systéma-
tiquement définir ce référentiel.
3.3.2.1. Principe de relativité

La relativité est  un des plus anciens principes de la physique. Laurent  Nottale (1998) résume bien
son histoire. Pour la simplifier, on peut dire que la relativité est marquée par trois grandes étapes : l’œuvre
de  Galilée  (relativité  du  mouvement)  et  l’œuvre  de  Henri  Poincaré  et  d’Albert  Einstein  pour  la  relativité
restreinte et d’Albert Einstein pour la relativité généralisée.

Avec Laurent Nottale, le « principe d’échelle » de Benoît Mandelbrot (1975) est identifié au grand
principe physique de la relativité, ce qui aboutit à la définition d’une relativité d’échelle. Ceci revient à dire
que les lois de la nature doivent être valides quel que soit le système de coordonnées choisi. Un système de
coordonnées  est  défini  par  une  liste  de  nombres,  ces  nombres  représentant  les  valeurs  de  grandeurs  qui
caractérisent l’état du système de coordonnées. Celui-ci se définit par un état de position, d’orientation, de
mouvement et d’échelle. Le premier se caractérise par les trois coordonnées spatiales et une temporelle ; le
second  par  trois  angles  (ou  six  dans  le  cadre  d’un  espace-temps) ;  le  troisième  par  trois  vitesses  et  trois
accélérations ;  le  quatrième par  quatre  résolutions  spatio-temporelles  et  leurs  corrélations  (Nottale,  2010).
Les valeurs des grandeurs sont donc relatives à un autre système de coordonnées. Ce principe est extrême-
ment fort : une loi transcrivant un phénomène naturel observé ne doit pas dépendre du support, de l’espace
support choisi. Il dépasse donc naturellement, presque lui-même le cadre de la seule physique.

En  géographie,  cela  fait  une  cinquantaine  d’années  que  nous  recherchons  des  lois  spatiales,
mélangeant  les  aspects  naturels  et  les  aspects  anthropiques.  Malheureusement,  la  dépendance  de  nos  lois
par  rapport  au  système  de  coordonnées  choisi  est  évidente.  En  introduisant  le  principe  de  relativité  dans
notre discipline, le sens de nos mesures et interprétations ne pourra qu’être plus fort. 

En  fait,  il  existe  « trois  grandes  relativités  du  mouvement » :  la  relativité  galiléenne,  la  relativité
restreinte  et  la  relativité  généralisée.  A  celles-ci,  l’idée  de  Laurent  Nottale  est  de  rajouter  une  relativité
d’échelle  qui,  par  analogie,  se  subdivisera  en  « relativité  galiléenne  d’échelle »,  « relativité  restreinte
d’échelle »  et  « relativité  généralisée  d’échelle ».  La  relativité  restreinte  d’échelle  étant  quelque  chose  de
spécifique à la physique, elle ne devrait pas exister en géographie (Nottale, 2010). Par contre, la relativité
d’échelle galiléenne explique les cas où la dimension fractale est constante dans l’espace-temps. De plus, la
relativité  généralisée  d’échelle  sera  au  cœur  de  cette  thèse.  Celle-ci  permet  de  rendre  compte  des  dimen-
sions fractales variables. En première approximation, tous les cas étudiés dans cette thèse correspondront à
ce  que  l’on  appelle  une  « dynamique  d’échelle ».  Ainsi,  il  semble  de  plus  en  plus  évident  que  l’espace
géographique ne pourra être défini que par cette approche.
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La  relativité  d’échelle  est  une  représentation  géométrique  de  la  nature,  par  l’intermédiaire  d’un
espace, et  non plus un objet ! L’objet est  ponctuel  et  peu commode à généraliser. Un espace est  plus pra-
tique car il est défini de l’intérieur, donc descriptible en tout point.

† Relativité galiléenne

C’est une première forme de relativité. Elle consiste à séparer espace et temps. La position devient
une conséquence du temps dans le cadre d’un déplacement. Elle est à la base de la mécanique newtonienne
dont le fer de lance est le principe d’inertie. Dans ce cadre, la vitesse reste constante. Relativités restreinte
et  généralisée  montrent  que  ce  n’est  qu’un  cas  particulier,  qu’une  première  approximation.  Toutefois,  on
constate  que  « l’origine  et  l’orientation  d’un  système  de  coordonnées  ne  sont  pas  absolues  et  dépendent
d’un  choix  du  système  de  référence.  L’état  du  mouvement  est  lui  aussi  dépendant  d’un  système  de
référence non absolu » (Da Rocha, 2004, p. 3).

† Relativité restreinte

La relativité restreinte change de cadre théorique par rapport à la relativité galiléenne. En effet, on
ne sépare plus désormais l’espace et le temps, mais on construit un espace-temps (à quatre dimensions) plat
(c’est-à-dire non courbe). La construction de cette théorie n’est possible que si l’on pose l’invariance de la
vitesse de la lumière qui devient donc la vitesse maximale de propagation des interactions. Autrement dit,
la vitesse de la lumière est  la  manifestation d’un infini inaccessible (par effet de projection d’un espace à
quatre  dimensions  dans  un  espace  à  trois  dimensions).  De  plus,  chaque  référentiel  possède,  pour  les  dis-
tinguer, un temps propre, c’est-à-dire le temps indiqué sur l’horloge liée à ce référentiel. Un changement de
référentiel quadridimensionnel s’opère grâce à la transformation de Lorentz, c’est-à-dire une rotation dans
l’espace-temps. En fait, la relativité restreinte n’est qu’une étape intermédiaire vers la relativité généralisée,
mais étant donné la grande valeur de la vitesse de lumière, la théorie de la relativité restreinte est inapplica-
ble en géographie ; elle n’est citée que pour mémoire.

† Relativité généralisée

La  différence  entre  la  relativité  restreinte  et  la  relativité  généralisée  modifie  profondément  les
équations de la physique par le simple fait de ne plus avoir un espace-temps plat, mais courbe. Aussi, pour
y  remédier,  Albert  Einstein  introduisit  les  principes  de  covariance  et  d’équivalence  qui  montrent,  entre
autres,  que  la  matière  équivaut  à  la  géométrie,  elle-même  restant  relative  (Nottale,  1998,  p. 83).  Cette
géométrie se retrouve évidemment en géographie lorsque l’on trace une carte ou un modèle numérique de
terrain. De plus, les temps en géographie sont propres à chaque objet, la durée de vie d’une montagne n’est
pas la même que celle d’une ville par exemple

† Les principes de covariance et d'équivalence

Le principe de covariance exige que les équations doivent garder leur forme (la plus simple possi-
ble)  dans  les  transformations  du  système  de  coordonnées  (Nottale,  1998).  On  distingue  deux  types  de
covariance : la covariance faible et la covariance forte. La covariance faible correspond au cas où les équa-
tions  ont  gardé,  sous  une transformation  plus  générale,  la  même forme que sous  la  transformation  partic-
ulière précédente. La covariance forte correspond au cas où la forme la plus simple possible des équations a
été obtenue.

Le  principe  d’équivalence  articule  les  principes  de  relativité  et  de  covariance  pour  un  « objet »
donné. Il montre comment un objet physique peut être remplacé, dans des conditions bien précises, par un
autre  équivalent  (Nottale,  1998).  Par  exemple,  le  champ  de  gravitation  est  localement  équivalent  à  un
champ d’accélération.
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† Vers une relativité d'échelle

« Position,  orientation  et  mouvement  sont  les  notions  relatives  prises  en  compte  par  les  théories
actuelles d’Einstein, qui énonce ainsi le principe de relativité, « les lois de la nature sont valides dans tout
système de référence, quel que soit son état ». Cependant, la question que l’on peut légitimement se poser
est de savoir si  l’état d’un système de référence est pleinement caractérisé par les seules données de posi-
tion,  orientation et  mouvement » (Da Rocha,  2004,  p. 4).  De ce fait,  « l’effet  d’échelle » de la géographie
peut modifier parfois profondément la vision que l’on a de l’objet étudié. Aussi, à l’état temporel et à l’état
spatial,  il  serait  peut-être  utile  d’ajouter  un  état  d’échelle.  Certes,  on  place  toujours  une  échelle  sur  une
carte,  mais  toujours  de  manière  neutre,  or  celle-ci  est  toujours  riche  en  informations  si  l’on  possède  les
bons outils pour l’analyser, l’outil privilégié est bien entendu l’analyse fractale.
† État d'échelle d'un système

Daniel  Da  Rocha  résume  parfaitement  l’ensemble  des  états  d’échelle  possible  d’un  système  de
coordonnées. « Un système de coordonnées à résolution trop élevée ne donnera pas le même résultat qu’un
système de coordonnées caractérisé par une résolution bien plus faible. […] En diminuant la résolution de
la mesure (du moment qu’elle est suffisamment faible par rapport à la distance parcourue), on peut retracer
le  parcours  de  manière  plus  précise  et  calculer  ainsi  la  distance  parcourue  avec  une  meilleure  précision.
Mais  cette  distance  ne  changera  pas  de  manière  explicite  en  fonction  de  la  résolution.  Il  n’en  est  pas  de
même dans d’autres situations, en particulier pour les systèmes quantiques » (Da Rocha, 2004, p. 5). Cette
propriété est  caractéristique d’objets mathématiques connus :  les  fractales.  Tout au long, de cette thèse, le
terme fractal devra être entendu comme étant un être ou un objet qui présentent des structures à toutes les
échelles. Ce qui signifie qu’il existe une structure géométrique différente lorsque l’on passe d’une échelle à
une autre (Eckert, 1921 ; Cuénin, 1972 ; Béguin et Pumain, 1994).
† Principe de relativité d'échelle

Le principe de la relativité d’échelle se formule alors : « les lois de la nature sont valables pour tous
les systèmes de coordonnées, quel que soit leur état d’échelle » (Nottale, 1998). C’est donc une formulation
complémentaire  à  la  relativité  du  mouvement,  car  si  ce  dernier  reste  le  principal  objet  de  la  physique,
l’échelle est  un problème que l’on rencontre quelle  que soit  la  discipline,  et  principalement  la  géographie
qui,  depuis  la  formalisation  d’Yves  Lacoste  (1976)  a  largement  compris  l’intérêt  d’une  analyse  multi-
échelle.  Certes,  l’analyse multi-scalaire qu’Yves Lacoste avait  conçue,  était  essentiellement  littéraire,  et  il
n’a  pas  eu  besoin  des  fractales,  en  tant  qu’objet  mathématique,  pour  arriver  à  décrire  des  emboîtements
d’échelle. Toutefois, elle correspond parfaitement à la philosophie de la géométrie fractale.

Si  l’échelle  permet  de  comprendre  l’émergence  des  limites  d’un  objet  à  une  échelle  donnée,  elle
apporte aussi un nouvel éclairage sur la définition d’un objet ou d’un espace en géographie.
3.3.2.2. Objet ou espace géographique ?

En  géographie,  un  problème  de  définition  existe  entre  objet  localisé  et  l’espace  dans  lequel  il  est
plongé (Maby, 2003). En réalité, seule une position relativiste permet de distinguer les deux. Un objet est
toujours caractérisé de l’extérieur (Figure 10.a.).
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Figure 10. Objet ou espace

Dans la Figure 10.a., l’objet est l’aire de forme tortueuse, et pour la mesurer on est obligé de se munir d’un
repère placé à l’extérieur de celui-ci, ce qui revient à comprendre que sans information provenant de l’ex-
térieur de l’objet, on ne peut pas savoir que l’on se trouve sur cet objet.

A  contrario,  un  espace  est  toujours  caractérisé  de  l’intérieur  (Figure  10.b.),  c’est-à-dire  qu’aucun
point extérieur n’est nécessaire pour le définir. Le repère fondamental est donc interne à l’objet. La capacité
de se placer  dans un repère interne à l’objet  fait  partie  de la  méthode (ou du mode de pensée)  relativiste.
Autrement dit, on peut savoir, par un raisonnement purement géométrique, que l’on est sur un objet partic-
ulier sans caractérisation extérieure. L’analyse spatiale a donc souvent adopté une position relativiste sans
le savoir (Parrochia, 2006). Prenons un exemple simple : le réseau urbain. Pour voir la répartition des villes
(les objets), il faut bien une référence pour les percevoir : une région administrative, un pays, etc. (territoire
ou espace). Les villes sont caractérisées dans un extérieur appelé région administrative, par exemple, mais
celle-ci  est  bien  définie  de  l’intérieur  dans  le  sens  où ce  n’est  pas  n’importe quoi,  elle  a  un contenu,  une
identité, et rien ne pourra y changer.
3.3.2.3. Espace géographique fractal

Un  des  problèmes  majeurs  de  la  fractalité  était  une  impossibilité  de  caractériser  une  fractale  de
l’intérieur.  La  position  relativiste  était  donc  impossible.  C’est  alors  qu’intervient  le  physicien  Laurent
Nottale qui montra comment caractériser la courbe de Van Koch de l’intérieur grâce à une base 4 de numéra-
tion  (Nottale  et  Schneider,  1984).  Depuis,  Laurent  Nottale  fabriqua  sans  relâche  de  nouveaux  espaces
fractals extrêmement généraux (1992 ; 1993).

De  grief,  le  rapport  échelle  -  limite  conduit  naturellement  à  la  question  des  formes  optimales.
Qu’est-ce qu’une forme optimale ? Peut-on définir l’échelle comme un élément clé à optimiser ? Existe-t-il
des formes optimales en géographie humaine ? Existe-t-il des formes optimales en géographie physique ?

3.3.3. Les formes optimales

Les  formes  optimales  sont  très  difficiles  à  définir.  Qu’est-ce  qu’être  optimal ?  Être  optimal  par
rapport à quoi ? En effet,  juger si  une organisation spatiale est  optimale reste très arbitraire ? Les échelles
peuvent-elles être un critère d’optimalité ?
3.3.3.1. Définition de l'optimisation

La forme, grâce à son existence géométrique et topologique, pose inévitablement la question de son
optimisation. Existe-t-il une organisation spatiale optimale ? Tel est souvent formulé le problème. Pourtant,
il  n’y  a  pas  de  question  plus  maladroite  que  celle-ci.  En  effet,  une  forme  optimale  ne  peut  l’être  qu’en
fonction  d’un  ou  de  plusieurs  paramètres.  Par  exemple,  un  cercle  minimise  la  distance  par  rapport  à  la
surface. L’optimalité a par conséquent besoin de critères pour exister. Dans ce cas, toutes les formes euclidi-
ennes ou fractales sont potentiellement optimales. Pourtant, le concept d’optimalité a fait son chemin dans
les sciences humaines. On trouve aujourd’hui le terme partout.
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Les concepts d’optimalité et d’optimisation ont besoin d’être défini car ils n’ont fait qu’une timide
apparition en géographie (Martin, 1991 ; 2004 ; Pumain, Robic, 2002). D’abord, il faut rappeler que l’opti-
misation est  une branche récente des  mathématiques (Hiriart-Urruty,  1996).  De plus,  le  terme « optimisa-
tion » est récent dans les dictionnaires français. Il faut ajouter à cela le fait que les termes « optimalisation »
et  « optimaliser » sont  désuets.  Le retour  de  ces concepts  dans le  langage scientifique marque un profond
intérêt pour la question, mais surtout un besoin de définir de nouveau ces termes.

« Optimiser » est un terme neutre. Il désigne à la fois « minimiser » et « maximiser ». Actuellement,
on associe, à tort, l’optimisation à la minimisation à cause, sans doute des développements économiques sur
le  sujet  (Hiriart-Urruty,  1996).  Toutefois,  le  principe  d’optimisation  en  mathématique  correspond  à  une
annulation de la dérivée.

Traditionnellement, un problème d’optimisation se résume en trois composantes majeures :

1. il faut des variables d’état (ou des paramètres) ;
2. il  faut  des  contraintes  sur  ces  paramètres.  Cependant,  il  faut  noter  que  les  contraintes

peuvent être facultatives, dans ce cas, on parlera d’optimisation sans contraintes ;
3. il  faut  un  ou  des  critères  pour  optimiser  ces  variables  d’état :  ce  sont  les  conditions

d’optimalité, conditions sans lesquelles le problème d’optimisation n’existe pas.

Mathématiquement, minimiser f(x) sous la condition x e C se formule de la manière suivante :

(P)∂ min@f HxLD
x eC

 avec 
D f = X

C Õ X

La fonction f qui, x e X, associe la valeur f(x), est le critère. La partie C de X est l’ensemble des contraintes.
Si C = X, alors x ne possède aucune contrainte dans son choix. C’est la définition mathématique de l’opti-
malisation sans contraintes (Hiriart-Urruty, 1996).
3.3.3.2. Optimisation en géographie

En géographie, l’enseignement de cette définition montre que l’optimisation spatiale n’existe pas en
soi.  Elle est  toujours la  résultante d’une action naturelle (par  les  lois  de la  physique) ou humaine (par  les
choix d’aménagement), et de l’organisation du milieu. L’optimisation s’effectue donc toujours par rapport
à quelque chose : une entité physique (surface, volume, énergie, etc.) ou une entité anthropique (économie,
droit, sociologie, etc.). Autrement dit, une optimisation spatiale se réalise toujours au dépend d’une autre.

Cela conduit naturellement à s’interroger sur la définition de l’optimisation des formes. L’optimisa-
tion de la forme a pour objet la recherche de la meilleure forme possible pour un certain problème (Henrot
et Sokolowski, 2003). La définition la plus courante est fondée sur le principe de Pierre-Louis de Mauper-
tuis :  « les  formes  optimales  résultent,  par  définition,  de  la  minimisation  d’un  chemin,  d’un  temps  de
parcours, d’une tension mécanique,  d’une énergie,  d’une quantité  de matériaux,  etc.  Ce souci d’économie
régit  la  Nature toute entière,  aussi  n’est-il  pas surprenant  de trouver  des formes optimales partout  (Figure
11) » (Octavia, 2005, p. 14-15).
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Conditions d'optimalité Formes optimales

Pour un périmètre fixé, la surface est la plus

grande

Cercle Hdémontré par Jacob Steiner en 1838L

Minimiser la surface extérieure Hdonc la perte

d'énergieL en maximisant le volume

Sphère

Demi-sphère Higloo des esquimauxL
Minimiser la surface extérieure en maximisant

le volume et la hauteur

Cône Htipi des IndiensL : hauteur

rayon
= 2

Maximiser le pavage de l'espace en conservant

l'équidistance entre les angles et les centres

Hexagone régulier

Maximiser la dissipation de l'énergie par

rapport à la surface d'échange

Méandre

Figure 11. Quelques formes optimales

Tout  cela revient  à dire que rechercher une minimisation, c’est  trouver quel  est  l’objectif  à attein-
dre.  C’est  un  « finalisme  méthodologique »  (Varenne,  2005).  Peut-on  optimiser  la  connaissance  que  l’on
vient de trouver ?

En  géographie,  l’espace  est  déjà  constitué :  il  existe  une  forme  de  départ  qu’il  faut  améliorer  en
fonction des besoins anthropiques (Figure 12). Toutefois, cela n’est jamais si simple, car les critères d’opti-
malité  entrent  souvent  en  conflit  d’intérêt.  Par  exemple,  si  l’on  prend  l’objet  « ville »,  actuellement,  la
volonté politique serait de minimiser son périmètre par rapport à sa surface, mais il faut également prendre
en compte le réseau intra-urbain afin de minimiser le temps d’accès au centre par rapport à la distance.

Critères d'optimalité Objet géographique à transformer

Minimiser le temps par rapport à la distance

Minimiser le coût par rapport à la distance

Réseau routier

Minimiser la distance par rapport à la surface Réseau hydrographique

Minimiser la surface par rapport au volume Montagne

Minimiser le périmètre par rapport à la surface Limite urbaine

Figure 12. Forme optimale et objets géographiques

3.3.3.3. Échelle comme condition d'optimalité

Se poser la question de savoir si  l’échelle est  une condition d’optimalité, revient à s’interroger sur
des  rapports  hiérarchiques.  Du  moins,  c’est  souvent  de  cette  manière  qu’ont  été  interprétés  les  facteurs
d’échelle. Par exemple, dans les formes arborescentes (cf. étude sur le réseau hydrographique), la condition
d’optimalité est le facteur d’échelle entre les différentes branches de l’arbre. C’est lui qui va définir toute la
structure, structure qui est multi-échelle, donc fractale.
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Existe-t-il  des  échelles  optimales ?  La  relativité  d’échelle  montre  qu’il  existe  des  échelles  plus
significatives  que  d’autres  que  l’on  appelle  échelle  de  coupure.  Dans  cette  perspective,  ces  échelles  de
coupure  sont  optimales,  mais  elles  sont  aussi  relatives.  En  effet,  si  la  résolution  de  référence  change,
l’échelle  de  coupure  existera  toujours,  mais  elle  n’a  rien  d’absolu.  Si  on  réfléchit  bien,  on  s’aperçoit  que
l’échelle  optimale  n’existe  pas,  car,  pour  l’atteindre,  il  faudrait  avoir  une  résolution  de  référence  tendant
vers zéro, c’est-à-dire l’infini. Cela étant, cette résolution de référence existe forcément et correspond à un
nombre réel. Autrement dit, elle est toujours finie donc toujours améliorable. Par conséquent, la quête de la
meilleure résolution telle que l’ont engagée beaucoup de géographes est  illusoire. Il  vaut mieux étudier le
lien  existant  entre  les  échelles  que  l’optimisation  de  ces  échelles.  D’ailleurs,  les  fractales  sont  en  règle
générale le  résultat  d’une optimisation sous  contraintes  « contradictoires ».  Par  exemple,  la  forme fractale
des  poumons  correspond  à  une  optimisation  du  problème  suivant :  comment  augmenter  une  surface
d’échange sans augmenter son volume ?

Ce chapitre  s’est  efforcé  de  montrer  que échelles,  limites  et  espace  étaient  étroitement  liées,  mais
surtout  qu’elles  étaient  relatives.  Le  problème de  l’échelle  amène  celui  de  la  limite  que  l’on  trace  à  cette
échelle.  Le  processus  d’agrégation  en  géographie  renvoie  au  M.A.U.P.,  et  plus  généralement  à  la  théorie
des  fractales,  et  encore  plus  généralement  à  la  théorie  de  la  relativité  d’échelle.  Une  échelle  est  toujours
relative par rapport à une autre, mais tout objet géographique possède une échelle. Autrement dit, c’est un
problème  de  fond  insoluble  que  l’on  rencontre  en  géographie,  mais  également  dans  d’autres  disciplines.
Aussi,  le   cœur  de  l’analyse  spatiale  doit  donc  être  l’étude  des  relations  entre  les  échelles,  et  non  les
échelles  elles-mêmes  et  pour  elles-mêmes.  La  théorie  mathématique  qui  étudie  ces  relations  s’appelle  la
théorie des fractales.

Notes
[1]  Attention.  Il  ne  faudra  pas confondre  l’analyse  fractale  et  l’analyse  des formes fractales.  La  première  est  une  véritable
analyse  au  sens  de  René  Descartes  qui  est  appelé  analyse  non  standard  fractale.  La  seconde  est  une  méthode  analytique
particulière qui permet de « mesurer » les formes fractales.

[2] Les forces extérieures sont les forces appliquées au système de l’extérieur, tandis que les forces intérieures sont les forces
entrant ou évoluant à l’intérieur du système.
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4
Structures fractales en géographie

Précédemment, le concept de « fractal » fut abondamment employé. Ce chapitre a pour objectif de
dégager quelques caractéristiques mathématiques afin de définir ce concept et l’articuler avec la théorie de
la relativité d’échelle.

4.1. Position du problème

Dès le début de la  Nouvelle géographie en France,  une approche fondamentale mise en œuvre fut
l’analyse multi-scalaire (Lacoste, 1976), c’est-à-dire plus exactement une description empirique et intuitive
des  structures  fractales  présentes  dans  l’espace  géographique.  Celles-ci  sont  nombreuses,  ne  serait-ce  que
par l’existence même des cartes. C’est ce que certains ont appelé la généralisation cartographique (Eckert,
1921 ;  Cuénin, 1972 ;  Béguin et Pumain, 1994) qui n’est autre que l’expression littéraire d’une géométrie
extrêmement générale appelée : géométrie fractale (Mandelbrot, 1975).

Le  terme  « fractal »  vient  de  l’adjectif  latin  fractus  (fracture)  et  du  verbe  frangere  (briser).  Éty-
mologiquement,  « fractal »  veut  donc  dire  fraction  et/ou  fracture.  Autrement  dit,  on  peut  prétendre  en
première  définition  qu’elle  permet  de  « mesurer  l’irrégularité  d’un  objet ».  En  effet,  la  géométrie  fractale
est un des outils qui permet de mesurer le chaos, ou plutôt qui essaye de le quantifier. Cependant, elle peut
être considérée comme une manière de voir le monde, indépendante du chaos. C’est pour cela que chaoti-
ciens et  fractalistes  expriment les  mêmes idées, mais n’ont  pas la  même priorité. Les premiers étudient la
dynamique des systèmes, tandis que les seconds étudient la structure des systèmes (Stewart, 1998, p. 308).

Traditionnellement  nous  utilisons,  pour  décrire  les  formes  que nous  voyons,  la  géométrie  euclidi-
enne  composée  par  les  figures  classiques  (carré,  cercle,  triangle,  polygones  divers…).  Ces  formes  si  pra-
tiques sont en réalité des archétypes, des schémas simplistes (mais nécessaires) des morphologies que l’on
rencontre  dans  la  Nature,  car  finalement  seules  les  œuvres  humaines,  en  architecture  en  particulier,  les
utilisent ; elles furent même au cœur du courant classique des XVIIe-XVIIIe siècles. Le noyau central de la
géométrie  euclidienne  est  l’inégalité  triangulaire  et  le  théorème  de  Pythagore.  Toutefois,  Karl  Fredrich
Gauss  découvrit  une  géométrie  qui  n’obéissait  pas  à  ces  règles ;  ainsi  naquit  la  première  géométrie  non
euclidienne qui fut étudiée de manière plus complète par Bernhard Riemmann. La géométrie riemanienne
vit ainsi le jour. Au cœur de celle-ci se trouve la notion de courbure qui permet de définir un espace courbe.
En géographie, le meilleur exemple d’espace courbe est la surface de la Terre. En effet, si l’on recherche à
représenter  cette  surface  dans  un  espace  euclidien  qui  est  plat  (c’est-à-dire  non  courbe),  on  est  conduit
nécessairement à augmenter la  surface de la Terre car  elle « se déchire » dans un espace plat (c’est-à-dire
euclidien ou minkowskien).
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Quelques années plus tard,  Albert  Einstein plaça la géométrie riemanienne au centre de sa théorie
de  la  relativité  du  mouvement.  Cependant,  il  est  apparu  à  Benoît  Mandelbrot  que  la  géométrie  riemanni-
enne  n’était  qu’une  géométrie  non  euclidienne  particulière.  Ainsi  depuis  une  trentaine  d’années,  la
géométrie euclidienne ainsi que la géométrie riemannienne furent englobées, dépassées par cette deuxième
géométrie non euclidienne : la géométrie fractale (années 1950). Celle-ci étudie des formes irrégulières, ou
qui nous apparaissent comme telles. Or, qu’y a-t-il de plus irrégulier et de plus structuré en échelles que les
formes  que  l’on  observe  à  la  surface  de  la  Terre.  La  géométrie  riemanienne  n’est  donc  qu’une  approche
triviale,  qu’une  première  approximation  possible  des  formes  terrestres.  Toutefois,  le  terme  « fractal »  est
extrêmement  général.  En première approche, on peut  citer la  définition de Benoît  Mandelbrot :  « les  frac-
tales  sont  des  objets  -  qu’ils  soient  mathématiques,  dus  à  la  nature  ou  dus  à  l’homme  -  qu’on  appelle
irréguliers, rugueux, poreux ou fragmentés, et qui, de plus, possèdent ces propriétés au même degré à toutes
les échelles. C’est dire que ces objets ont la même forme qu’ils soient vus de près ou de loin » (Mandelbrot,
1997,  p. 33).  Cette  définition  est  à  nuancer,  car  elle  n’est  valable  que  dans  le  cas  très  particulier  d’une
autosimilarité de forme de référence.

Le  principal  outil  permettant  d’étudier  les  formes  fractales,  est  ce  que  l’on  appelle  la  dimension
fractale ou plutôt les dimensions fractales qui présentent la particularité d’être parfois non entières, ce qui
peut  paraître  surprenant,  car  Euclide  et  ses  successeurs  avaient  défini  les  dimensions  mathématiques
comme  étant  strictement  entières,  ce  sont  les  dimensions  topologiques :  la  dimension  zéro  correspondant
aux  points,  la  dimension  une  aux  courbes,  la  dimension  deux  aux  surfaces  et  la  dimension  trois  aux  vol-
umes  (Figure  13).  Depuis,  on  a  ajouté  à  ceux-ci  l’espace-temps  à  quatre  dimensions  de  Hermann
Minkowski et d’Albert Einstein et l’espace-temps fractal à cinq dimensions de Laurent Nottale. Ce concept
de  dimension  au  sens  d’Euclide  ne  pouvait  cependant  définir  que  des  figures  que  nous  qualifierons  de
régulières,  créées  généralement  par  les  Hommes  oubliant  que  la  Nature  aime  l’irrégularité.  Ainsi,  les
dimensions fractales qualifient quelques-uns de ces objets oubliés. Il  s’agit d’un « nombre qui quantifie le
degré d’irrégularité et de fragmentation d’un ensemble géométrique ou d’un objet naturel, et qui se réduit,
dans le cas des objets de la géométrie usuelle d’Euclide, à leurs dimensions usuelles » (Mandelbrot, 1975,
p. 155). Toutefois, la dimension fractale ne remplace en rien la dimension topologique, elle la complète.

À  partir  de  là,  cette  thèse  présentera  la  relativité  d’échelle  de  Laurent  Nottale  qui  peut  être  vue
comme  une  extension  de  la  théorie  mathématique  de  Benoît  Mandelbrot  ou  un  complément  nécessaire  à
une théorie qui peut paraître difficile à mettre en œuvre.

Figure 13. Définitions des dimensions topologiques
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4.2. Les fractales et la relativité d'échelle

Après avoir évoqué dans les chapitres précédents, la philosophie générale de la relativité d’échelle,
ce chapitre a pour objectif  de décrire son  aspect  un peu plus technique. Pour ce faire,  il  faut simplement
remarquer  que  la  relativité  d’échelle  est  une  théorie  physique  qui  met  en  œuvre  l’idée  que  la  dimension
fractale d’un objet peut varier  en fonction de sa résolution (ou d’une autre variable d’échelle).  Autrement
dit,  l’irrégularité  apparente  d’un  objet  géographique  physique ou  humain  se  transforme  en  fonction  de  sa
résolution. Les cours d’eau semblent être un bon exemple en géographie car la longueur d’un cours d’eau
dépend de la résolution de la carte dans laquelle il se trouve. La longueur devient une fonction explicite de
la résolution ¶ de la carte et peut s’écrire : L(¶). Il en est de même pour une distance temporelle T qui peut
dépendre  explicitement  de  la  résolution  à  laquelle  on  l’exprime.  Mesurer  un  débit  toutes  les  heures  ne
donne pas la même courbe que si l’on effectue cette mesure tous les quarts d’heure. Pourtant, il existe une
loi  d’échelle  entre  ces  deux  courbes  qui  les  relie  explicitement  puisque  de  la  courbe  exprimée  en  quart
d’heure, on peut déduire celle exprimée en heure. De même, de la courbe en heure, on peut déduire celle de
toutes les deux heures, trois heures, quatre heures, …, n heures. La structure en échelles temporelles appa-
raît alors clairement sous la forme d’une loi.

L’expression  est  lancée :  « loi  d’échelle ».  À  ce  niveau,  il  est  important  distinguer  l’échelle  de
référence  et  l’échelle  de  résolution.  La  première  correspond  à  l’unité  de  mesure  :  le  mètre,  le  kilomètre,
etc.,  tandis que la seconde caractérise l’échelle à partir  de laquelle il  existe une information tangible. Une
loi d’échelle se rapporte à la nature de la transformation d’une résolution ¶1 en une résolution ¶2, et ainsi de
suite. L’échelle de référence est, par contre, une constante. Benoît Mandelbrot (1967 ; 1975) montra que la
transformation la plus simple existante suivait une loi puissance qui unit explicitement la longueur avec la
résolution dans laquelle elle se trouve. Tout objet géographique est potentiellement un objet qui dépend de
son  échelle  d’observation  (Brunet,  1968 ;  Lacoste,  1976).  Quelle  est  la  nature  mathématique  de  cette
dépendance ?  Quels  sont  les  nouveaux  concepts  qu’elle  entraîne ?  En  quoi  est-ce  fondamental  en
géographie ?

4.2.1. La dépendance d'échelle

La  dépendance  d’échelle  est  un  concept  très  général  qui  suppose  l’existence  d’une  loi  d’échelle
entre  la  résolution  et  une  variable  d’échelle.  Le  cas  le  plus  connu  est  celui  de  l’invariance  d’échelle  qui
correspond  à  l’émergence  d’une constante  (la  dimension  fractale)  qui  lie  la  variable  étudiée  à  sa  variable
d’échelle. Cependant, il ne faut pas confondre invariance d’échelle et autosimilarité (reproduction à l’infini
d’une  même  forme).  L’autosimilarité  est  une  invariance  d’échelle  particulière,  mais  toute  invariance
d’échelle  n’est  pas  autosimilaire.  Le  succès  de  l’invariance  d’échelle  est  dû  à  sa  simplicité  (Mandelbrot,
1975).  Toutefois,  très  vite,  les  lois  d’échelle  se  compliquent  dans  une  première  approche  que  sont  les
multifractales.  Il  est  important  de  rappeler  que  le  concept  de  multifractalité  a  bien  été  inventé  par  Benoît
Mandelbrot dans les années 1960 ; c’est ce qu’il avait appelé à l’origine « fractal ». Il a été repris par Gior-
gio  Parisi  et  Uriel  Frisch  (1985)  sous  une  autre  forme.  La  multifractalité  correspond  à  l’imbrication  de
plusieurs invariances d’échelle qui renvoie au concept d’échelles de coupure qui sera défini plus tard dans
ce chapitre. Toutefois, la relativité d’échelle montre qu’il existe d’autres lois d’échelle possibles beaucoup
plus générales et plus simples que les multifractales.

4.2.2. L'invariance d'échelle - L'approche empirique

L’invariance d’échelle correspond à une dimension fractale constante. Avant  d’aborder la manière
de caractériser la fractalité et les lois d’échelle les plus simples, il nécessaire de rappeler la définition d’une
dimension.
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4.2.2.1. Dimension topologique et dimension fractale

La  notion  de  dimension  est  intuitive.  Elle  correspond  soit  au  nombre  de  degré  de  liberté,  soit  au
nombre de coordonnées nécessaires pour décrire tous les points d’un objet. Les exemples les plus explicites
sont  le  segment,  le  carré,  le  cube,  l’hypercube,  etc.  Pour  expliquer  la  notion,  il  est  plus  simple  d’utiliser
l’exemple d’un carré transformé par une homothétie (Figure 14 et Figure 15)

Exemple 1. Si l’on agrandit un carré de côté ¶0 (carré rouge), d’un facteur 3, alors il faut 9 carrés de
départ pour remplir le nouveau grand carré (Figure 14)

Figure 14. Agrandissement ou réduction d’un carré par un facteur 3

Exemple 2. Si l’on agrandit un carré d’un facteur 5, alors il faut 25 carrés de départ pour remplir le
nouveau grand carré (Figure 15).

Figure 15. Agrandissement ou réduction d’un carré par un facteur 5

Plus  généralement,  si  l’on  agrandit  un  carré  d’un  facteur  l,  alors  il  faut  N  carrés  de  départ  pour
remplir le nouveau grand carré. Soit N = ¶0

D dans le cas du carré D = 2. Il est aisé de vérifier que :

9 = 32

25 = 52

etc.

D  est  appelée  dimension  d’homothétie.  Après  avoir  vu  la  dimension  2,  les  dimensions  les  plus
courantes sont 1 et 3 :

æ pour D = 0, N = ¶0
0, on parlera alors de poussières ;

æ pour D = 1, N = ¶0
1, on parlera alors de courbes ;

æ pour D = 3, N = ¶0
3, on parlera alors de volumes ;

Ce  qui  différencie  un  objet  euclidien  d’un  objet  fractal  est  le  fait  que,  pour  un  objet  ou  espace
fractal, la dimension peut être non entière. Le conditionnel de cette phrase est fondamental, car ce n’est pas
systématique.  Ceci  précisé,  il  reste  à  définir  ce  que sont  les  fractales  autosimilaires.  Pour  cela,  l’exemple
type et le plus pédagogique reste la courbe de Koch (1904) (Figure 16).
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La courbe de Koch s’obtient par un processus itératif simple. On part d’un segment que l’on divise
en  trois  parties  égales  (Figure  16.a.).  On  supprime  la  partie  centrale  et  on  la  remplace  par  un  triangle
équilatéral  dont  la  partie  adjacente  au  segment  n’est  pas  reliée  (Figure  16.b.).  Cette  figure  s’appelle  un
générateur,  car  on  reproduit  cette  forme  de  base  dans  tous  les  segments  composants  la  structure  de  base
(Figure 16.b.). Ainsi, à chaque étape, la structure devient de plus en plus complexe.

Figure 16. La courbe de Helge von Koch

La longueur totale de chaque étape vaut alors :

LTOT0
 = 1 ; on pose ¶0 = 3, alors LTOT0

 = 1
3

 + 1
3

 + 1
3

 = 3 ä 1
¶0

 ;

LTOT1
 = 1 + 1

3
 = 4

3
 ; on pose N = 4, ce qui correspond au nombre de sous-segments valant 1

¶0
 ;

LTOT2
 = 

LTOT1

3
 ä 4 = J 4

3
N2

LTOT3
 = 

LTOT2

3
 ä 4 = J 4

3
N3

...

LTOT n
 = 

LTOT n - 1

3
 ä 4 = J 4

3
Nn

Cette itération, très simple, revient à dilater d’un facteur 3n  le générateur et de multiplier par 4n  le nombre

de segments. Ainsi,  si  on applique N  = ¶0
D,  on obtient 4n  = H3nLD.  Dans ce cas, D  a peu de chance d’être

entier. La courbe de Koch possède donc une dimension homothétique non entière : D = 
ln 4
ln 3

 º 1,27... D est

une  grandeur  que  l’on  appelle  dimension  fractale.  Cette  dernière  permet  de  « mesurer » la  fractalité  d’un
objet.  Toutefois, il  existe d’autres dimensions que celle homothétique. Plusieurs définitions sont possibles
pour  caractériser  une  dimension  fractale.  Ainsi,  il  existe  la  dimension  fractale  de  boîtes,  la  dimension
fractale de Hausdorff,  la dimension fractale de Minkowski,  etc.  Un même objet peut  donc avoir plusieurs
dimensions fractales permettant de le caractériser, même si dans la plupart des cas, les différentes méthodes
fournissent des valeurs de dimensions fractales égales.
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De plus, la courbe de Koch permet également de constater qu’une fractale correspond à une struc-
ture  dans  la  structure.  Dans  ce  cas  autosimilaire,  on  trouve  le  générateur  dans  chaque  segment  le  com-
posant. Une structure fractale possède alors au minimum deux niveaux. L’irrégularité seule ne suffit pas à
caractériser une structure en échelle. Ce point est fondamental, car il explique parfaitement qu’un arbre soit
fractal pris globalement (c’est-à-dire à sa limite), mais qu’une de ces branches aussi irrégulière soit-elle, ne
le soit  pas.  Autrement dit,  la  courbe de Helge von Koch est  irrégulière et  ordonnée à différentes échelles.
Cela permet de définir la géométrie fractale de manière plus profonde. Elle correspond à un fractionnement
hiérarchisé  de  la  matière.  C’est  pourquoi,  en  géographie,  la  géométrie  fractale  permet  de  comprendre
l’organisation  d’un  espace  hétérogène  et  anisotrope.  Le  document  se  trouvant  à  l’adresse  URL suivante :
http://www.dunod.com/documents/48387/Front_annexe_A.pdf,  résume  bien  cette  idée :  « L’Homme,
colonisant l’espace qui lui est  attribué, y crée, aux échelles de son activité, une telle géométrie. Le réseau
routier, qui comprend des voies de toutes tailles (des autoroutes aux sentiers) ramifiées et interconnectées,
évitant les obstacles, et reliant tous les lieux destinés à interagir, montre une géométrie rappelant celle des
racines ou des mycéliums dans le sol.  A d’autres échelles au contraire,  la géométrie fractale est  plutôt  un
handicap.  Nous  nous  efforçons  alors  de  la  remplacer  par  une  géométrie  localement  euclidienne :  nous
égalisons les terrains, supprimons tout ce qui dépasse et  tous les creux, rectifions les côtes, remplaçons la
« nature  sauvage » par  le  jardin  -  quitte  à se  passer  des propriétés  originales,  parfois  irremplaçables,  d’un
habitat  fractal ;  mais  la  maîtrise  des  géométries  inextricables  nous  manque »
[http://www.dunod.com/documents/4838\7/Front_annexe_A.pdf].  Ce  qui  amène  naturellement  à  se  poser
la question de la définition de la dimension fractale d’un objet non autosimilaire.
4.2.2.2. La dimension fractale non autosimilaire

Un  objet  fractal  non  autosimilaire@1D  peut,  comme  la  courbe  de  Helge  von  Koch,  posséder  une
dimension fractale constante. Toutefois, dans de nombreux cas, la dimension fractale varie en fonction de
la  résolution  ou  l’objet  lui-même  se  structure  en  échelle  par  des  lois  beaucoup  plus  complexes  que  ce
chapitre développera plus tard. La loi d’échelle la plus simple s’écrit :

L(¶) = L0J ¶0
¶
ND−DT

où : L correspond à la longueur variable en fonction de la résolution ; L0 et ¶0 correspondent aux paramètres
initiaux,  c’est-à-dire  à  la  longueur  normée  de  la  première  carte  et  à  la  longueur  mesurée  sur  la  carte ;  ¶
désigne  la  variable  d’échelle ;  D  correspond  à  la  dimension  fractale  et  DT  correspond  à  la  dimension
topologique. Cette loi se démontre de manière géométrique par le simple arpentage d’une courbe irrégulière
et hiérarchisée (Figure 17).

† L'arpentage d'une courbe fractale

L’arpentage  est  une  méthode  qui  revient  à  mesurer  la  longueur  d’une  courbe  grâce  à  des  pas
(résolution) successifs.

Figure 17. Arpentage d’une courbe fractale
Source : http://www.dunod.com/documents/48387/Front_annexe_A.pdf
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On  pose  Ln  =  AB,  la  plus  longue  distance  entre  A  et  B.  Soit  l0  =  AB  (précédemment,  on  l’avait
nommé  ¶0),  la  distance  la  plus  courte  entre  A  et  B  c’est-à-dire  la  distance  à  vol  d’oiseau.  l0  va  servir  de
résolution de référence. De plus, par définition, on sait que la longueur Ln est un rapport de proportionnalité
avec une résolution ln ce qui revient à compter L0 telle que :

L0 = N0 ä l0
DT  avec N0 œ �

Si on utilise maintenant une unité plus petite l1 reliant toujours A et B par la plus courte distance et
correspondant à une réduction k de l’étalon précédent, alors, tout comme la courbe Koch,

l1 = 
l0
k

 avec k œ � (et non plus �)

d’où la longueur totale du niveau suivant :

L1 = N1 ä l1
DT  avec N0 ∫ N1 c’est-à-dire L0 ∫ L1.

Plus généralement, ln = 
ln- 1

k
 ou ln = 

l0
kn  et LHlnL = NHlnL ä lnDT .

D’après  les  règles  d’agrandissement  vue  précédemment,  on  sait  que  si  l’on  pose  une  longueur
caractéristique N0 de l’objet, alors le rapport de proportionnalité varie comme :

N1 = N0 ä kD  avec D appartenant au corps des réels ou à celui des complexes.

Il  est  nécessaire  de  multiplier  kD  par  N0  car  ici  nous  avons  une  unité  de  référence  N0,  appelée  longueur

caractéristique (ou unité de mesure). Plus généralement,

Nn = N0HknLD

Plus  généralement,  Ln  =  Nn  ä  ln
DT  =  N0HknLDln

DT  =  N0J l0

ln
ND

ln
DT  =  N0l0

DT  J l0

ln
NDJ ln

l0
NDT

 c’est-à-dire

Ln = L0J l0
ln
ND- DT

 ici DT  = 1.

Si  on  linéarise  l’équation,  on  obtient  alors  ln  Ln  =  ln  L0  +  (D  -  DT )lnK l0
ln
O

D-DT

.  Cette  méthode

montre qu’il  est  plus simple d’adimensionner  le  problème. En effet,  puisque LHlnL  = N HlnL  ä  lnDT   et  Ln  =

L0K l0
ln
OD- DT

, N HlnL = ln
DT   = L0K l0

ln
OD- DT

, or L0 = N0 ä l0
DT , donc N HlnL = N0K l0

ln
ODTK l0

ln
OD- DT

 = N0K l0
ln
O

D

.

Ces relations permettent de définir la fractalité à travers les cartes géographiques.

† Le cas des cartes géographiques

En  géographie,  il  est  évident  que  la  longueur  mesurée  sur  une  carte  entre  deux  points  varie  en
fonction de l’échelle à laquelle on effectue la mesure. Le résultat de la mesure dépend donc de la résolution
¶ définie, en cartographie, de la manière suivante :

¶DT  = 
LH¶ L
NH¶ L  
ö longueur normée correspond à une mesure sur le terrain

ö longueur correspondant sur la carte Hou la résolutionL
Autrement dit,

L(¶) = N(¶) ä ¶DT

Cette formule implique que le passage d’une carte à une autre n’est pas qu’un simple rapport d’échelle. Il
s’agit d’une transformation beaucoup plus complexe. Le problème de l’effet d’échelle peut alors s’exprimer
mathématiquement de la manière suivante : « comment varie la longueur mesurée en fonction de la résolu-
tion à laquelle on la mesure ? » La plus simple trouvée est bien entendu à nouveau :

Ln = L0J ¶0

¶n
ND- DT

.
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Nombreux  sont  ces  objets  de  « longueurs  infinies »  en  géographie :  la  côte  de  la  Grande-Bretagne
(Mandelbrot, 1967), les cours d’eau, le réseau routier, etc.

L’idée de fractalité en cartographie consiste à affirmer qu’entre deux cartes de résolutions ¶1  et ¶2,
les longueurs L(¶1) et L(¶2) ne seront pas identiques, car leur valeur dépend de la résolution choisie. Cette
proposition  a  pour corollaire :  N(¶1)  ∫  N(¶2).  Si  l’on  prend  un  exemple  très  exagéré,  et  que  l’on  suppose

qu’à une carte d’échelle 1 / 25 000, N0 = 50 cm pour un objet géographique donné. Sa longueur normalisée

(celle du terrain) correspondrait  à L0 = 12,5 km, on peut alors dresser un tableau montrant la variation des
longueurs en fonction de l’échelle de la carte (Figure 18). Dans ce cas, L0  est une longueur caractéristique
servant d’étalon et ¶0 correspond à l’échelle de référence.

n

Longueur mesurée sur

la carte N avec

un degré de précision de

1 cm

Résolution ¶

HcmL
Longueur normalisée L

HkmL

0 50 25 000 12,5

1 22 50 000 12,5

2 9 100 000 12,5

3 5 150 000 12,4

4 3 200 000 12
5 1 500 000 10

Figure 18. Loi d'échelle fractale

La loi d’échelle correspondante pour les longueurs normalisées serait donc :

Ln º 1 250 000 J ¶

25 000
Nd avec, ici, D º 1,3 et d = D – 1.

La Figure 18 est bien loin de ce que croient la plupart des géographes et que l’on peut résumer dans
la Figure 19.

n
Longueur mesurée sur

la carte N

Résolution ¶

HcmL
Longueur normalisée L

HkmL
1 50 25 000 12,5

2 25 50 000 12,5

3 12,5 100 000 12,5

4 6,25 200 000 12,5

5 1,25 1 000 000 12,5

6 0,125 10 000 000 12,5

Figure 19. Loi d'échelle non fractale

Lorsque l’on calcule la dimension fractale de cette structure en échelle comme étant le rapport entre
le logarithme népérien de la longueur mesurée et le logarithme népérien de la résolution (1/¶), on ne trouve
pas systématiquement une dimension fractale constante correspondant à la pente de la droite obtenue en (ln
L, ln(1/¶)) qui correspond à l’invariance d’échelle. Il faut bien comprendre que cette pente n’est autre que
la limite de la variation de la longueur L par rapport à celle de la résolution ¶ lorsque ¶ tend vers 0.

lim
¶ö 0

 
D ln L

-D ln ¶
 = D - DT
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Autrement  dit,  la  dimension  fractale  invariante  d’échelle  est  définie  à  la  limite  de  l’objet  fractal.  Bien
qu’elle demeure un cas souvent rencontré, en règle générale, elle n’est pas satisfaisante pour caractériser les
« objets  réels ».  En  effet,  dans  la  plupart  des  cas,  l’ajustement  le  plus  pertinent  en  (ln L, ln(1/¶))  est  un
ajustement non linéaire. Il peut s’agir d’un polynôme, par exemple, et là, il n’est pas possible de s’en sortir
avec les techniques classiques. Que faire de ces ajustements qui sont nettement meilleurs que l’ajustement
linéaire ? La réponse à cette interrogation peut être trouvée grâce à la théorie de la relativité d’échelle dont
il  faut  reprendre  les  principales  étapes  de  construction.  Une  transformation  d’échelle  n’est  donc  pas  une
simple homothétie. Cela revient à dire que, lorsque l’on applique une homothétie sur un objet, les structures
obtenues ne sont pas forcément homothétiques. Elles correspondent alors à l’apparition de nouvelles struc-
tures à différents niveaux. Avant de passer au cœur de la théorie de la relativité d’échelle, il faut définir les
différentes méthodes de calcul d’une dimension fractale.

4.2.3. Évaluer une dimension  fractale

Il existe plusieurs modèles de calcul de dimension fractale. La plus facile à mettre en œuvre est une
dimension  fractale  de  boîtes  (carrées,  rectangulaires,  circulaires,  hexagonales,  triangulaires,  avec  des
losanges, cubiques, sphériques, etc.). La plupart du temps, on utilise une méthode indirecte pour déterminer
la dimension fractale. Dans la formule L(¶) = N(¶) ä ¶DT , N correspond à la longueur mesurée sur la carte,
mais il  s’agit  plus  généralement  d’un nombre  entier  dû  à la  résolution choisie.  Si  cette résolution  est  une
boîte de taille variable de dimension topologique DT correspondant à celle de l’objet à mesurer, il suffit de
compter  pour  chaque  taille  le  nombre  de  boîtes  pleines  pour  estimer  la  dimension  fractale  dans  un
graphique bi logarithmique [ln(¶) - ln(N(¶))]. Par exemple, pour la formule de l’invariance d’échelle :

LH¶ L = L0J ¶0

¶
ND-DT

il est facile de remplacer L(¶) et L0 par leur valeur respective :

N(¶) ä ¶DT  = N0¶0
DT J ¶0

¶
ND-DT

 = N0¶0
DT J ¶0

¶
NDJ ¶0

¶
N-DT

 = N0¶0
DT J ¶0

¶
NDJ ¶
¶0

NDT

d’où

N H¶ L = N0J ¶0

¶
ND

Cette  formule  est  remarquable  car  elle  permet  d’évaluer  directement  la  dimension  fractale  à  partir  d’un
simple comptage avec différentes résolutions.
4.2.3.1. Dimension par comptage de boîtes carrées

La  méthode  est  très  simple :  il  s’agit  de  créer  artificiellement  une  maille  carrée  ¶n  variable.  Se
faisant, la dimension fractale se calcule en comptant le nombre Nn de carrés contenant une partie de l’objet
mesuré C. La dimension de comptage de boîtes carrées correspond, dans un espace bi logarithmique entre
le côté du carré (qui sert  de résolution) et  le nombre de carrés, à la pente de la droite observée, s’il  s’agit
d’un ajustement linéaire. Autrement dit,

DB = lim
¶ö 0

 ln Nn

ln K 1
¶
O

.

Cette  méthode  donne  directement  la  dimension  fractale  de  l’objet  sans  faire  intervenir  sa  dimension
topologique (Barnsley, 1988).
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Si ce calcul est séduisant par sa simplicité, Alain Le Méhauté (1990) souligne que « cette méthode

présente cependant d’assez graves inconvénients. En particulier si 
1
¶

 n’est pas entier, les carrés de côtés ¶n

vont généralement déborder à gauche et à droite du graphe de C, ce qui fausse les résultats et introduit des
irrégularités dans le diagramme, surtout lorsque ¶n  est  grand » (Le Méhauté, 1990, p. 50). En effet,  passer
une  certaine  taille,  le  nombre  de  boîtes  est  strictement  homothétique ;  sa  dimension  fractale  vaut  alors  2.
Aujourd’hui, cette déviation est connue sous le nom de correction log-périodique (Sornette,  1998 ;  2000 ;
2003 ;  2006 ;  Nottale,  1997). Toutefois, en pratique, les  fluctuations apportées par ce biais  sont telles que
lors d’un ajustement par la méthode des moindres carrés, la fonction ajustée passe, en général, au niveau de
la valeur moyenne des fluctuations, ce qui fait qu’en moyenne dans les fortes fluctuations apportées par ce
biais,  la  dimension fractale  des  grandes  boîtes  s’ajuste  sur  celle  des  petites  boîtes.  Enfin,  pour  limiter  cet
effet,  il  suffit  d’utiliser  une  suite  dyadique  dans  la  taille  du  côté  des  carrés,  c’est-à-dire  que  les  grilles
utilisées vont parfaitement s’emboîter en suivant la loi du type : ¶n = 2-n.

En  géographie,  ce  calcul  est  très  fréquent  car  l’analyse  d’images  est  courante.  En  effet,  la  taille
minimale du carré d’une grille ne fait que représenter la taille d’un grain sur une carte, d’un pixel sur une
image satellite  donnée,  etc.  De plus,  le  calcul  est  très  simple  à  programmer :  il  suffit  d’utiliser  une  partie
entière pour savoir si tel pixel fait partie de tel carré. Il suffit de normaliser la grille en fonction de la résolu-
tion utilisée et  d’y appliquer une partie entière pour connaître la position de chaque point  par rapport à la
résolution  de  la  grille.  Afin  de  faciliter  la  lecture  des  graphiques  (ln ¶  -  ln N(¶)),  la  résolution  variable  ¶
sera systématiquement donnée soit en mètre, soit en kilomètre.

Soit  un  repère  orthonormé.  Soient  K  et  L  les  valeurs  d’une  grille  de  résolution  ¶.  Alors

K = EJ xi

¶
+ 1N

L = EJ yi

¶
+ 1N

.  Il  faut  noter  que  cette  fonction  permet  d’arrondir  systématiquement,  par  défaut,  un

nombre  réel  à  sa  partie  entière.  Par  exemple,  E(1,25) = 1.  E(311,262616) = 311,  mais  pour  connaître  la
position exacte dans une grille avant d’appliquer la partie entière sur la fraction, il est nécessaire d’y ajouter
1 pour positionner correctement le point dans la grille (Figure 20).

Figure 20. Méthode de calcul d'une dimension fractale par comptage de boîtes carrées

La  résolution  ¶  =  10  signifie  qu'en  deçà  de  cette  échelle,  il  n'y  a  plus  d'informations  disponibles.  Autrement  dit,  pour  notre  exemple  (en  vert)

l'abscisse  sera  arrondie  à  30  et  l'ordonnée  sera  arrondie  à  20.  Si  x  =  25  et  y  =  15  alors  ces  deux  points  appartiendront  à  K = E J 25
¶
+ 1N = 3  et

L = E J 15
¶
+ 1N = 2. Si on multiplie (K, L) par la résolution ¶ = 10, on trouve bien (30, 20).
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4.2.3.2. Dimension par comptage de boîtes hexagonales

La dimension par comptage de boîtes hexagonales est calculée en suivant la même méthode que la
dimension fractale de boîtes carrées. En effet, seule la forme globale de la grille change : au lieu d’avoir des
carrés, on aura des hexagones réguliers. Le pavage d’hexagones réguliers permet de remplir complètement
l’espace  en  respectant  une  équidistance  entre  les  angles  et  les  centres.  Tout  comme la  dimension  fractale
par comptage de boîtes carrées, celle de boîtes hexagonales s’obtient dans un espace bi logarithmique entre
le côté de l’hexagone et le nombre d’hexagones non vides. La dimension fractale correspond à la pente de
la droite observée, s’il s’agit d’un ajustement linéaire.

Toutefois,  le  maillage  hexagonal  régulier  présente  ses  propres  difficultés  techniques :  (1)  d’abord
dans la création de la grille ;  (2) puis dans la possibilité de compter les boîtes. La méthode la plus simple
pour créer une grille hexagonale consiste à dessiner deux hexagones tels que le montre la Figure 21 est de
les translater dans toutes les directions du plan. Une fois la grille créée, il suffit de faire varier la résolution
(le  côté  de  l’hexagone)  pour  obtenir  un  procédé  analogue  à  la  méthode  par  comptage  de  boîtes  carrées
(Figure 22). Il  est  important de remarquer  que le fait  que les  grilles hexagonales ne s’emboîtent pas n’est
pas un problème. Comme cela a été entrevu dans le paragraphe précédent, les grilles carrées ne s’emboîtent
qu’à condition que la suite formée par les facteurs d’échelle soit dyadique. Un autre problème plus impor-
tant apparaît : celui du comptage.

Figure 21. Générateur pour fabriquer une grille hexagonale

Figure 22. Grilles hexagonales à mailles variables

En effet, pour une grille carrée, il suffit d’introduire une partie entière pour décider si un pixel fait
parti d’un carré de la grille. Pour un pavage hexagonal, le problème du comptage ne peut se résumer à cette
simplicité. Dans ce cas, il faut faire intervenir les équations des droites qui composent la boîte hexagonale
et résoudre un système de six inéquations à six inconnues :

x ¥ b1

y ¥ a2 x + b2

y ¥ a3 x + b3

x  b4

y  a5 x + b5

y  a6 x + b6

La première équation correspond à la Figure 23 à la droite n°1, la seconde à la droite n°2, etc. Ce système
est facilement programmable. Toutefois, les temps de calcul sont dix à cent fois plus longs que celui de la
dimension par comptage de boîtes carrées.
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Figure 23. Hexagone et signe des équations de droites

Cette méthode permet-elle d’obtenir de meilleurs résultats que la dimension par comptage de boîtes
carrées ? Pour ce, il faut effectuer un test (Figure 24).

ln N = -1,055 H≤ 0,010Lln ¶ + 9,003 H≤ 0,073L
Intervalle de confiance 99%

Mesure d'une dimension fractale par comptage de

boîtes carrées

¶ est en mètre

ln N = -1,086 H≤ 0,015Lln ¶ + 8,581 H≤ 0,089L
Intervalle de confiance 99%

Mesure d'une dimension fractale par comptage de

boîtes hexagonales

¶ est en mètre

Figure 24. Comparaison entre une mesure de dimension fractale par comptage de boîtes carrées et une mesure de la dimension fractale par comptage 
de boîtes hexagonales

A travers ces résultats, on perçoit bien que les deux résultats sont à peu près équivalents. En effet,

D = 1,086 - 1,054 = 0,032

sD = 0, 0152 + 0, 0102  = 0,018

Aussi,  dans  la  suite,  de  cette  thèse,  la  méthode  par  comptage  de  boîtes  carrées  sera  systématiquement
utilisée.
4.2.3.3. Grilles et densités locales

À partir  d’un pavage,  il  est  possible de connaître la  position précise des pixels  dans la  grille. Une
densité locale peut alors être calculée. Elle correspond au rapport entre le nombre de pixels contenus dans
le  carré  ou  l’hexagone  considéré  et  la  surface  de  ce  carré  ou  de  cet  hexagone.  Pour  chaque  résolution
envisagée, il est donc possible de calculer une telle densité et d’en réaliser la répartition dans l’espace (cf.
chapitre 10).
4.2.3.4. Dimension fractale par comptage de boîtes circulaires

Une  telle  dimension  fractale  s’obtient  de  la  même  manière  que  les  dimensions  par  comptage  de
boîtes carrées ou hexagonales (Figure 25), la variation du rayon du cercle correspondant à la résolution.
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Figure 25. Méthode de calcul par une grille composée de boîtes circulaires

4.2.3.5. Dimension radiale

La dimension fractale radiale est une autre dimension fractale par comptage de boîtes (Morency et
Chapleau,  2003).  Au  lieu  de  calculer  le  nombre  de  carrés  ou  d’hexagones  non  vides,  on  dénombre  le
nombre  de  points  contenus  dans  les  anneaux.  La  difficulté  par  rapport  aux  autres  types  de  comptage  est
qu’il faut réaliser la mesure en tout point (ou pixel) et en faire une moyenne. La résolution, ici, est donnée
par l’intervalle entre les anneaux. Pour obtenir une estimation de la dimension fractale, il suffit d’appliquer
le même principe que la dimension par comptage de boîtes carrées ou hexagonales, à savoir dans un espace
bi logarithmique entre la résolution et le  nombre de points  moyens contenus dans les anneaux par résolu-
tion  considérée.  S’il  s’agit  d’une  relation  linéaire,  la  pente  de  la  droite  observée  donne  directement  la
dimension fractale.

4.2.4. De l'invariance d'échelle aux lois d'échelle généralisée - L'approche analytique

L’approche analytique généralisée de la dimension fractale est une grande nouveauté de la relativité
d’échelle.  Elle  débute  par  la  construction  de  fonctions  dites  scalantes  et  d’un  opérateur  différentiel  de
dilatation.
4.2.4.1. Fonction scalante

En  première  approche  des  lois  d’échelle,  il  y  a  les  fonctions  scalantes  qui  s’obtiennent  en  trois
étapes (Nottale, 2010).

(1) Soit une dilatation ou une contraction q sur une variable de position X.

∂ X ö X '

X ' = qX

On appelle fonction scalante f :

f(qX) = qaf(X)

(2) On passe d’une résolution à une autre par la relation :

∂ ¶ö ¶ '

¶ ' = r¶

Soit X une variable de position dépendant de la résolution. Alors

X(r¶) = r-dX(¶)

où DF = 1 + d.

(3) Généralement, la position dépend d’une autre fonction f (la vitesse par exemple)

f(r-d X ) = r-daf(X )

où DF ' = 1 + da.
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4.2.4.2. Opérateur différentiel de dilatation

Qui ne s’est pas demandé lorsqu’il utilise les fractales, pourquoi travaille-t-on avec le logarithme de
la résolution, et pas directement sur la résolution ? La réponse à cette question tient en quelques lignes.

Conformément à la méthode dite de Gell-Mann-Levy, on définit  une dilatation ou une contraction
infinitésimale dr de la résolution ¶. (Figure 26).

Figure 26. Schéma d'une dilatation infinitésimale

La résolution ¶' s'écrit ¶'  = ¶(1 + dr) car ¶dr ö 0. On sait que la longueur L est fonction de cette résolu-
tion, ce qui s’écrit L(¶(1+ dr)). Que vaut cette fonction ? Pour l’établir, on utilise un développement limité
de Taylor, ce qui donne :

L(¶') = L[¶(1 + dr)] = L(¶) + (¶ + ¶dr - ¶)
∑LH¶ L
∑¶

 = L(¶) + ¶dr
∑LH¶ L
∑¶

 = L(¶) + 
∑LH¶ L
∑ ln ¶

dr

Même si  l’on s’est  arrêté  au premier  ordre,  on voit  très  bien que l’on  ne travaille  pas directement
sur la résolution ¶ mais avec son logarithme.

On  peut  donc  définir  ce  que  l’on  appelle  un  opérateur  différentiel  de  dilatation  Ď = 
∑
∑ ln ¶

.  Cela

revient  à  dire  que  l’on  peut  désormais  utiliser  ln  ¶  comme  variable  naturelle  des  lois  d’échelle  (Nottale,
1994) avec toutes les conséquences mathématiques que cela implique c’est-à-dire que ¶ n’est pas définie en
zéro et doit être positif.
4.2.4.3. L'invariance d'échelle démontrée analytiquement

Fort  de cet opérateur  différentiel  de dilatation,  comment se comporte une variation de la longueur
en fonction du logarithme de sa résolution ? Pour y répondre, il faut reprendre la méthode exposée par Jean-
Paul et Françoise Bertrandias (1997). On suppose que la courbe de la fonction L  recherchée soit continue.
Autrement dit,

lim
D ln ¶ö 0

 = 
DL
D ln ¶

 = 
dL

d ln ¶
 = b(L)

Il faut alors noter que l’échelle de référence l intervient si bien que l’on devrait plutôt écrire 
¶

l
 à la place

de ¶, mais comme l est une constante, lorsqu’on la dérive cette valeur devient nulle. Ainsi, pour alléger les
calculs, on ne prend en considération que ¶.

La première fonction b(L) que nous pouvons tester grâce à un développement limité est a.

L = a ln ¶ + L0

La seconde fonction b(L) que l’on peut tester grâce à un développement limité est aL.

dL

d ln ¶
 = aL ó L = L0 I l¶ M

-d

 avec -d = D - DT

On  retrouve  bien  l’équation  fondamentale  caractérisant  l’invariance  d’échelle.  La  dimension  fractale  est
alors bien égale à :

d ln L

d ln ¶
 = a = DT  - D.

4.2.4.4. L'apparition spontanée d'une zone de transition fractal - non fractal

Ensuite, on peut ajouter un terme b : b + aL.
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dL

d ln ¶
 = b + aL ó L = L0B1 +I l¶ M

-dF avec -d = D - DT

Géométriquement, cette loi se traduit par une brisure spontanée de l’invariance d’échelle.

L ö L' = L + L1 = L0 J l
¶
Nt + L1

L' correspond à une translation c’est-à-dire un changement de repère. Après quelques calculs, on trouve :

L'  = L1B1+ J l1¶ NtF  avec t = D - DT

avec la nouvelle échelle de coupure définie telle que l1  = lJ L0

L1
N

1

t
. Toutefois, il est important de noter que,

dans ce cas, la dimension fractale est toujours alors bien égale à :

d ln L

d ln ¶
 = (D - DT ) 

1

1 + J ¶
¶0
ND-DT

ce qui peut prêter à confusion avec l’invariance d’échelle.

Figure 27. Le modèle à une transition fractal - non fractal (Nottale, 1993)

Le premier graphique montre la relation dans un espace bi logarithmique. On voit bien que contrairement au modèle sans transition la partie fractale
ne se poursuit pas jusqu'à l'infini. A une certaine échelle, la fractalité est interrompue. Le second graphique montre la variation locale (ou la dérivée)
de la dimension fractale

4.2.5. La dépendance d'échelle et la construction de lois d'échelle

Puis, vient le cas de c + bL + aL²

dL

d ln ¶
 = b + aL ó L = L0

A1+ J ¶0

¶
NtE

A1+ J ¶1

¶
NtE  avec 

a = -
tL0 L1

L0 - L1

b = t
L0 + L1

L0 - L1

c= -
t

L0 - L1

La dimension fractale locale est donc égale, dans ce cas à :

d ln L

d ln ¶
 = -t¶t

¶1
t - ¶0

t

H¶0 ¶1Lt + ¶tI ¶1
t - ¶0

t - ¶2M
Et ainsi de suite. Ce cas correspond en fait au calcul d’une dimension de boîtes avec ces deux échelles de
coupure ¶0 et ¶1 (Lesne, 2004).
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4.2.6. Les multifractales

Dans le cadre  de  la relativité  d’échelle,  les  multifractales  apparaissent  comme étant  des structures
plus générales. En effet, jusqu’ici, on a toujours considéré les dimensions topologiques c’est-à-dire que l’on
a  toujours  supposé  que  l’objet  possédait  une  partie  non  fractale.  Il  n’est  pas  exclu  que  l’objet  soit  déjà
fractal.  Dans  ce  cas,  si  l’on  reprend  le  modèle  à  une  transition,  on  peut  prétendre  que  L0  soit  lui-même

fractal : L0 = aJ ¶0

¶
ND1

, d'où

L(¶) = aJ ¶0

¶
ND1B1+ b J ¶0

¶
ND2F

Cette équation est remarquable car elle prouve que l’on n’a pas besoin d’avoir recours à des méthodes de
statistiques  discrètes  assez  complexes  (Dubois,  1995 ;  OMT,  1995)  pour  étudier  les  multifractales  d’un
point de vue théorique.

4.2.7. La correction log-périodique

La correction  log-périodique  est  un  ajustement  qui  permet  de  rendre  compte  de  certaines  fluctua-
tions  que  l’on  peut  observer  autour  d’une  loi  puissance,  d’où  le  choix  du  terme  « correction »,  même  si,
parfois, la « correction » est dominante. Il s’agit réellement de corriger la loi d’échelle initiale pour obtenir
un meilleur ajustement. Cette correction est fondamentale car en fonction de la longueur d’onde de celle-ci,
on peut risquer de mesurer la fluctuation, au lieu de mesurer la dimension fractale (Figure 28). Il en existe
deux grandes versions : celle de Didier Sornette et celle de Laurent Nottale.

Log-périodicité avec une forte période

La fluctuation est visible.

Log-périodicité avec une faible période

La fluctuation est masquée. On risque de la

mesurer à la place de la dimension fractale.

Figure 28. Fluctuation log-périodique et mesure de la dimension fractale

4.2.7.1. La version de Didier Sornette (1997)

Didier  Sornette  a  essayé  de  modéliser  l’oscillation  observée  en  utilisant  une  dimension  fractale
complexe. Rappelons qu’un nombre complexe est un nombre z tel que z = a + ib, où a  est appelé la partie
réelle  et  ib  la  partie  imaginaire  avec  i² = -1.  Ainsi  arrive-t-on  à  modéliser  cette  oscillation  en  utilisant  la
forme trigonométrique des nombres complexes. En effet,

L = L0¶
D' = L0¶

D+ iw  = L0¶
D ¶ iw  = L0¶

D eiw ln ¶

L = L0¶
D[cos(w ln ¶) + i sin(w ln ¶)]

où : D est la dimension fractale et w est la phase de la fluctuation log-périodique.

La partie réelle est

Re(¶) = L0¶
Dcos(w ln ¶) 
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Elle correspond à une fluctuation log-périodique. Il faut remarquer qu’il est très courant dans des sciences,
comme la physique, d’utiliser les nombres complexes pour ensuite revenir aux nombres réels, ce qui, d’un
point  de  vue  analytique,  est  correct  puisque  les  nombres  complexes  sont  une  « extension »  des  nombres
réels. Cette partie réelle correspondant à une fluctuation log-périodique de l’invariance d’échelle.
4.2.7.2. La version de Laurent Nottale (1997)

Si  l’on  revient  à  la  théorie  de  la  relativité  d’échelle,  il  faut  trouver  une  équation  différentielle
d’échelle  donnant  cette  fluctuation  log-périodique.  La  démonstration  est  plus  compliquée  que  celle  de
l’invariance  d’échelle,  mais  elle  aura  pour  effet  de  satisfaire  au  principe  de  covariance :  la  dépendance
d’échelle  log-périodique  aura  la  même  forme  mathématique,  mais  plus  sophistiquée,  que  la  dépendance
d’échelle puissance.

Pour obtenir une telle fluctuation, il faut reprendre l’équation :

d LH¶ L
d ln ¶

 - DL(¶) = 0.

On généralise cette équation en supposant que le deuxième membre n’est plus égal à zéro :

d LH¶ L
d ln ¶

 - DL(¶) = c(¶).

Cependant, en vertu du principe de covariance, on exige que c(¶) corresponde à une équation différentielle
de la même forme que l’équation initiale.

On obtient donc :

d c H¶ L
d ln ¶

 - Dc(¶) = 0

où D’ = D + iw.

Toutefois, D' correspond à une dimension fractale complexe. Pour trouver L(¶), il faut dériver par le

logarithme de la résolution l’équation 
d LH¶ L
d ln ¶

 - DL(¶) = c(¶), ce qui donne :

d2 LH¶ L
Hd ln ¶ L2  - D d LH¶ L

d ln ¶
 = d c H¶ L

d ln ¶
.

Dans cette équation, on remplace 
d c H¶ L
d ln ¶

 par sa valeur D'c(¶)  ,  ce qui correspond, finalement à une équa-

tion différentielle du second ordre :

d2 LH¶ L
Hd ln ¶ L2  - (D + D')

d LH¶ L
d ln ¶

  + (DD')L(¶) = 0.

Cette  équation  se  résout  très  facilement  car  elle  correspond  à  un  modèle  d’équation  différentielle  connu
dont la solution est :

L(¶) = L0¶
D(1 + b¶d)

où  d = iw

En posant cette équation sous sa forme trigonométrique, on obtient :

L(¶) = L0¶
D(1 + b cos(w ln ¶)) + i(L0b¶Dsin(w ln ¶)).

Dans  cette  équation,  on  exige,  tout  comme  dans  le  paragraphe  précédent,  que  la  partie  imaginaire  soit
négligeable, et on obtient la correction log-périodique dépendante d’échelle :

L(¶) = L0¶
D(1 + b cos(w ln ¶)).

  69



Autrement  dit,  le  simple  fait  d’avoir  un  « plus  un »  supplémentaire  par  rapport  à  la  formule  de
Didier  Sornette  suffit  à  la  transformer  en  une  relation  dépendante  d’échelle  et  obtenir  une  équation  plus
pratique.  De plus,  le  paramètre b  conditionne la nature de  la loi  log-périodique :  si  b  est  inférieure à 1,  il
s’agit d’une véritable correction, ce qui n’est plus le cas, s’il est supérieur à 1.

4.2.8. L'idée de « dynamique d'échelles » 

Jusqu’à  présent,  seuls  les  cas  où  la  dimension  fractale  était  constante  c’est-à-dire  déduite  de  sa
définition mathématique :

D(ln ¶) = - d ln L

d ln ¶
.

La dynamique d’échelles consiste à « inverser » l’étude des variations :  plutôt  que d’étudier  les  variations
du  logarithme  de  la  variable  dépendant  de  l’échelle  par  rapport  à  celle  du  logarithme  des  résolutions,  on
considérera  les  variations  de  cette  variable  par  rapport  à  celle  de  la  dimension  fractale  qui  devient  une
variable appelée « djinn » (Nottale, 2001) permettant de déduire la résolution. Autrement dit, la dimension
fractale  varie  de  manière  continue  à  travers  l’espace  des  échelles,  et  non  plus  de  manière  discontinue
comme c’était le cas dans les paragraphes précédents. Afin de ne pas alourdir les notations mathématiques,
le « djinn » sera appelé t.

- ln ¶ = 
d ln L

d t
.

Cette formule peut être comparée de manière analogique à l’expression de la vitesse dans les lois du mouve-

ment : v = 
d x

d t
 (v la vitesse ; x la position ; t le temps). La logarithme de la résolution est donc une « vitesse

d’échelles ».

Toujours  de  manière  analogique,  on  peut  dire  que  -ln(¶)  est  une  vitesse  d’échelle,  ce  qui  permet
alors de créer une « accélération d’échelles » G :

G = 
d2 ln L

HdtL2
où tout comme les lois de la dynamique, l’accélération serait liée à une « force d’échelle » et à une « masse
d’échelle ».

F = mG

La  « dynamique  des  échelles »  est  loin  d’être  aussi  simpliste,  comme  cela  sera  montré  dans  les
chapitres  suivants.  Aussi,  avant  de  conclure  ce  chapitre,  il  faut  revenir  sur  une  notion  fondamentale  tant
dans le domaine géographique que dans celui de la relativité d’échelle, celle « d’échelles de coupure ».

4.2.9. Les échelles de coupure

Dans les exemples précédents, des échelles de coupure peuvent être clairement définies. Elles sont
au cœur de la relativité d’échelle.  Il  en  existe deux  sortes.  La première renvoie à la  limite physique de la
méthode  de  calcul  comme  la  dimension  fractale  de  boîtes.  En  effet,  une  fois  que  la  boîte  devient  trop
grande par  rapport  à l’objet  mesuré, un nombre constant apparaît :  1,  de même, la boîte peut  devenir trop
petite  et  atteindre  la  taille  d’un  pixel  physique  par  exemple,  et  un  nombre  maximum Nmax  apparaît.  On  a
donc deux échelles de coupure : une minimale ¶min et une maximale ¶max.

Toutefois,  un  second  type  d’échelle  de  coupure  peut  être  dégagé  lorsqu’il  existe  des  brisures  de
symétrie.  Déterminer  de  manière  précise  ce  type  d’échelle  de  coupure  est  une  nouveauté  de  la  relativité
d’échelle.  Dans  le  cadre  d’une  même méthode  de  calcul,  il  se  peut  que l’on  observe  différente  transition
fractal - non  fractal  par  exemple,  ce  qui  permet  d’identifier  des  niveaux  d’organisation.  Autrement  dit,
cibler les échelles de coupure est une stratégie très importante pour l’étude des formes en géographie.
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En effet,  l’échelle engendre la limite, ce qui règle la question de la taille. De ce fait,  tant que l’on
n’est pas à la bonne échelle, on ne peut pas percevoir la limite de l’objet géographique, donc de sa forme.
« Le monde des géographes est avant tout un monde de formes… » résume André Dauphiné (2003, p. 148).
Les échelles de coupure sont donc essentielles, car le projet scientifique de la géographie est d’expliquer les
formes déployées de (ou sur) l’interface terrestre (Martin, 2004). Autrement dit, l’idée clé de la géographie
est de prétendre que la position dans l’espace, au sens très général du terme, n’est pas neutre et qu’il a un
sens,  ce  qui  revient  souvent  à  étudier  le  rapport  entre  le  continu  et  le  discontinu.  Celui-ci  est  l’adage  de
toute  science.  La  physique,  par  exemple,  étudie  les  deux :  une  première  approche  est  presque  toujours
discrète (discontinue) et une seconde est continue par l’établissement d’une fonction analytique. En géogra-
phie, l’étude des formes nécessite une approche par la limite des objets géographiques. Quelle est la limite
d’une montagne, d’un bassin versant, d’une ville, etc. ? Cela signifie que la géographie étudie, avant tout et
de  manière  essentiellement  phénoménologique,  les  discontinuités  spatiales,  à  savoir  comment  tel  objet  se
différencie  de  tel  autre ?  (Brunet,  1968)  Ces  discontinuités  peuvent  généralement  être  identifiées  par  une
approche multi-échelle qui permet de caractériser l’espace géographique.

4.3. Retour sur la nature de l'espace géographique

À  la  lumière  des  réflexions  précédentes,  il  devient  logique,  voire  trivial,  de  penser  que  l’espace
géographique  au  sens  large  du  terme  est  fractal.  Ainsi,  toute  structure  géographique  d’origine  naturelle
et/ou anthropique est évidemment fractale, car son existence dépend de la résolution de l’espace considéré,
mais  toutes les  études  géographiques  ne  sont  pas systématiquement  fractales.  Par  exemple,  une étude des
acteurs ou de l’importance politique d’un objet ne l’est pas, du moins explicitement.

Nombreuses sont les études fractales en géographie humaine et en géographie physique, mais elles
mènent généralement à des impasses, car beaucoup de ces études associent invariance d’échelle et autosimi-
larité  (Moussa  et  Bocquillon,  1993 ;  Batty  et  Longley,  1994 ;  Frankhauser,  1994 ;  Rodríguez-Iturbe  et
Rinaldo, 1997,  etc.).  Il  est  clair que si  le monde était  autosimilaire,  toutes les  structures spatiales l’organ-
isant se répèteraient à l’infini, or il n’est pas nécessaire d’être un scientifique pour constater que la morpholo
gie d’une ville, par exemple, ne ressemble pas à celle des continents à l’échelle terrestre. Le simple fait de
changer  de  niveau  et/ou  de  résolution  transforme  l’objet  étudié.  Autrement  dit,  un  changement  d’échelle
n’est jamais neutre. Etudier cette ville à une résolution de 1 centimètre représente 40 kilomètres n’est pas la
même  étude  morphologique  qu’à  l’échelle  1  centimètre  représente  50  mètres.  C’est  une  évidence,  mais,
dans  les  analyses,  peu  de  géographes  prennent  en  considération  ce  phénomène  qui,  pourtant,  fut  mis  en
évidence par Roger Brunet (1968, p. 77) et par Marie Piron (1993). L’échelle géographique n’est donc pas
un  simple  rapport  homothétique  (Volvey,  2005).  En  effet,  elle  définit  la  limite  physique  des  objets  géo-
graphiques.  À  l’échelle  continentale,  une  ville  n’est  qu’un  cercle,  mais  si  on  zoome  continûment  de
manière infinitésimale comme le suggère la relativité d’échelle, sur ce cercle à une échelle plus fine, peu à
peu de nouvelles structures vont émerger (réseau urbain dans lequel est plongé cette ville, puis sa morpholo-
gie  propre).  Un  lien  peut  donc  être  établi  entre  les  limites  des  objets  géographiques  et  leur  échelle  car-
tographique.  Ce  qui  compte  alors  pour  une  étude  géographique  n’est  donc  pas  de  trouver  une  résolution
plus fine mais de comprendre l’organisation en échelle de ces structures car changer d’échelle implique à la
fois un gain et/ou une perte d’informations. Le niveau d’étude choisi est donc fondamental. Ce n’est pas un
gadget. L’action (l’aménagement)  menée à une échelle donnée peut donc se propager  de manière positive
dans d’autres niveaux, mais trop souvent de manière négative. Par exemple, à petite échelle l’aménagement
du Rhône était  une  nécessité pour  mieux contrôler  les  inondations  saisonnières,  mais  à grande échelle,  la
construction des différents barrages a rendu le bilan sédimentaire de la Camargue négatif, ce qui fait qu’elle
est  condamnée  à  disparaître  (Miossec,  1998).  Il  ne  suffit  pas  de  penser  uniquement  à  l’échelle  humaine
pour résoudre un problème.
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L’espace géographique au sens large du terme est donc un espace fractal. Il  peut aussi être plongé
dans un  temps fractal,  ce  qui  donne un  espace-temps fractal.  En  réalité,  il  existe  quatre  couples possibles
entre  le  temps  et  l’espace :  (1)  temps  fractal - espace  non  fractal ;  (2)  temps  fractal - espace  fractal ;  (3)
temps  non  fractal - espace  non  fractal ;  (4)  temps  non  fractal - espace  fractal.  Ce  qu’enseigne  la  relativité
est que, si l’on voulait modéliser la réalité, il faudrait avoir une résolution infinie, or elle est malheureuse-
ment  finie.  Autrement  dit,  un  modèle  aussi  sophistiqué  soit-il  est  limité  par  sa  résolution  de  référence.  Il
convient donc de comprendre comment passer d’une échelle grossière à une échelle plus fine, plutôt que de
rechercher une échelle de référence absolue qui n’existe pas. Les échelles sont relatives, comme le temps et
comme les longueurs. Il faut nécessairement étudier les lois qui organisent l’emboîtement du monde et dans
le monde.

On peut donc dire que l’effet d’échelle en géographie n’est ni plus ni moins qu’une conséquence de
la  fractalité  évidente  des  objets  géographiques.  Que  l’on  soit  en  géographie  humaine  ou  que  l’on  soit  en
géographie  physique,  tout  objet  géographique  que  l’on  cherche  à  caractériser  via  une  analyse  spatiale
dépend  de  l’échelle  de  référence  dans  laquelle  on  caractérise  l’objet.  La  quasi-totalité  des  variables  de  la
géographie humaine sont elles-mêmes fractales. Par exemple, nombreux sont les travaux montrant que les
indicateurs économiques comme le P.I.B. obéissent à des lois d’échelle. D’autres variables plus classiques
comme la densité de population restent dépendantes de l’échelle. En géographie physique, la fractalité des
montagnes,  des cours d’eau,  etc.  est  un peu mieux connue.  Elles participent  à l’explication de l’organisa-
tion  hiérarchique  spatiale  du  domaine  concerné.  Toutefois,  dans  les  différentes  approches  menées  en
géographie  humaine  ou  physique,  la  fractalité  est  souvent  vue,  à  tort,  comme  une  cause,  ce  qui  conduit
généralement  à  une  impasse  conceptuelle  et  une  impossibilité  de  mise  en  pratique.  On  obtient  alors  des
résultats idiographiques : « J’ai calculé la dimension fractale de telle montagne ou telle ville » par exemple.
La première question d’un néophyte sur ce calcul serait « Et alors ? ». Le chercheur ne saurait quoi répon-
dre. En relativité d’échelle, c’est très différent, d’une part parce que l’on ne calcule pas la dimension frac-
tale, mais une dimension fractale, d’autre part parce que la fractalité devient une conséquence de la dépen-
dance d’échelle, donc un support d’analyse fondamental qui permet de prendre en considération réellement
la  structuration  d’un  objet  dans  l’espace  des  échelles  (ou  des  résolutions).  L’analyse  multi-scalaire  prend
alors  un  sens  nouveau.  Désormais,  avec  la  relativité  d’échelle,  on  pourra  étudier  l’emboîtement  d’échelle
d’un objet à travers plusieurs cartes d’échelles différentes - il  en faudrait  au  moins une dizaine pour com-
prendre l’organisation scalaire.  Ainsi,  la  géographie aura (enfin)  une totale maîtrise de l’effet d’échelle et
pourra beaucoup mieux l’appréhender.

Notes
[1] Dans cette thèse, l’expression « non autosimilaire » sera préférée à « autosimilarité statistique », car « non autosimilaire »
semble plus parlant que « autosimilarité statistique ».

72   



Partie 2. Morphométrie en géographie
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5
L'analyse morphologique

L’objectif  de  ce  chapitre  est  de  rassembler  diverses  définitions  connues  autour  de  l’étude  des
formes  en  géographie  afin  d’en  fonder  une  analyse  morphologique  généralisée.  En  effet,  la  géographie  à
travers  la  géomorphologie  s’est  très  tôt  penchée  sur  la  morphométrie  (Baulig,  1959),  avant  de  l’oublier
quelque peu. Avec l’apparition des théories de la complexité, un regain pour la morphométrie appliquée à
différentes branches de la géographie tant humaine que physique, s’est fait jour.

5.1. La définition de l'analyse morphologique

Elle se décline en deux termes : morphologie et morphométrie.

5.1.1. Morphologie en géographie

La  morphologie  est  l’étude  des  formes.  Il  existe  différents  types  de  morphologies  en  géographie
(Brunet et alii, 1992, p. 338) : la morphologie terrestre (ou géomorphologie) (Derruau, 2001), la morpholo-
gie  urbaine  (Allain,  2005),  la  morphologie  agraire,  etc.  Cela  conduit  à  la  recherche  d’une  analyse  mor-
phologique qui s’efforce « d’isoler [les]  formes élémentaires, en commençant par les cas les plus simples,
les plus homogènes » (Baulig, 1959, p. 396).

Alain Reynaud (1971) montra que l’on pouvait aborder la morphologie par quatre méthodes :

1.  le type aristotélicien (ou la primauté de la classification) ;
2.  le type historisant (ou la primauté de la chronologie) ;
3.  le type cartésien (ou la primauté de la causalité) ;
4.  le type structuraliste (ou la primauté de la relation).

Ces quatre voies possibles ont toutes montré leur limite, car aucune d’elles n’a pris en compte le problème
essentiel de l’échelle. La limite qui cristallise une forme possède systématiquement des gammes d’échelles
d’existence (Martin, 2004). De plus, elles se sont systématiquement heurtées au problème que Jean Petitot
(1998 ;  2004)  avait  appelé  « l’obstruction galiléenne ».  De ce fait,  les  formes ont  toujours été  étudiées en
géographie à travers soit une analyse temporelle, soit une analyse spatiale. Toutefois, la mesure de morpholo-
gies en géographie a été très tôt envisagée.
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5.1.2. Morphométrie en géographie

La  morphométrie,  dans  son  sens  le  plus  général,  correspond  à  l’étude  et  à  l’analyse  géométrique
et/ou  topologique  d’un  objet,  d’une  structure.  Littéralement,  la  morphométrie  renvoie  à  la  mesure  des
formes. Il s’agit donc une branche particulière de la morphologie. Quelque part, la morphométrie est née de
la nécessité des Hommes de cartographier leur planète. Son lien est par conséquent étroit avec la géométrie.
Au fil  des siècles,  la  morphométrie est  devenue une annexe à de nombreuses disciplines académiques,  en
biologie, en minéralogie, en paléontologie, en géographie comme le montre Johnny Douvinet qui réalisa la
dernière  synthèse  sur  le  sujet  (Douvinet  et  alii,  2007).  Elle  se  développa  en  fonction  des  configurations
étudiées (espace ponctuel, réseau, surface et volume) ce qui permit la création d’un nombre impressionnant
d’indices  (Douvinet  et  alii,  2005)  dans  lesquels  il  faudrait  remettre  un  peu  d’ordre.  Toutefois,  comme le
soulignait Henri Baulig, « la morphométrie [en géographie] peut rendre des services appréciables à condi-
tion  qu’elle  se  propose  des  problèmes  simples  et  bien  définis »  (1959,  p. 394),  du  moins  en  première
approche.

La  morphométrie  permet  d’estimer  quantitativement  si  un  objet  ressemble  à  un  autre,  ou  au  con-
traire,  s’il  s’en  éloigne.  Plusieurs  approches  sont  possibles :  l’approche  indicielle,  l’approche  statistique,
l’approche  topologique,  l’approche  géométrique.  Bien  entendu,  elles  sont  généralement  combinées.  De
plus,  on  peut  mener  une  analyse  des  formes  soit  en  termes  de  dynamique,  soit  en  termes  de  position.
Autrement dit, on retrouve les deux variables du mouvement que sont les variables temporelles et spatiales.

5.2. L'analyse temporelle et spatiale des formes

Pour réaliser une analyse morphologique,  on peut  décomposer toute morphologie en morphostruc-
ture et en morphodynamique. La première étudie la stabilité ou la stationnarité des formes ; la seconde, leur
instabilité ou leur non-stationnarité.

5.2.1. La stabilité et la stationnarité des formes

L’analyse  morphologique est  avant  tout  temporelle  en  géographie,  et  particulièrement  en  géomor-
phologie (Martin, 2004). Le déploiement d’une forme dans le temps explique sa répartition spatiale ou ses
limites, mais dans de nombreux cas, la variable spatiale est tout aussi explicative que la variable temporelle.
Par  exemple,  il  est  possible  de  définir  une  approche  morphologique  qui  serait  indépendante  du  temps,  et
une approche seulement spatiale. C’est ce que l’on appelle une approche stationnaire.

L’analyse temporelle des formes soulève deux questions. Comment et pourquoi une forme émerge-t-
elle ? Comment et pourquoi une forme se maintient-elle un certain temps ? La première question renvoie la
notion  de  morphogenèse.  Le  terme  « morphogenèse »  a  été  inventé  par  Goethe.  Au  sens  strict,  la  mor-
phogenèse  correspond  à  l’apparition  d’une forme  du  vivant.  C’est  d’ailleurs  pour  cela  que le  vocabulaire
autour des formes correspond à de nombreux termes du vivant (naissance, développement, mort,  etc.).  En
géomorphologie,  par  exemple,  le  cycle  de  William  Morris  Davis  (1899)  est  clairement  inscrit  dans  cette
analogie : un relief naît, vit et meurt. Toutefois, Alain Reynaud (1971) montra qu’il s’agissait d’un anthropo-
morphisme extrêmement dangereux. En effet, pour lui, celui-ci est aberrant, car un mouvement tectonique
ou une variation du niveau de la mer peuvent « rajeunir » le relief. En effet, la transformation d’une forme
physique en  une  autre  ne  signifie  pas  qu’elle  vieillit :  ce  n’est  pas  un  être  vivant.  D’ailleurs,  René Thom
(1974)  fit  la  même  remarque,  et  ajouta  que  la  terme  « morphogenèse »  devait  reprendre  un  sens  plus
général d’apparition d’une forme (Thom, 1974, p. 252).
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Dans  le  monde  des  formes,  ce  qu’il  y  a  de  surprenant  est  la  persistance  de  celles-ci.  René  Thom
(1974 ;  1991)  a  essayé  de  l’expliquer  à  travers  sa  théorie  des  formes  prégnantes  et  des  formes  saillantes.
Pour  lui,  une  forme prégnante  résiste au  bruit,  ou  plus  généralement  au  changement.  Il  s’agit  donc d’une
morphostructure stable, mais comment expliquer cette stabilité des formes, surtout qu’en géographie, elles
sont constamment soumises à des éléments transformants, c’est-à-dire des agents ou des acteurs « poussan-
t » au changement.

5.2.2. L'instabilité et la non-stationnarité des formes

Le  changement  est  matérialisé  par  le  concept  de  morphodynamique.  Comme  cela  a  été  vu,  elle
renvoie  d’abord  à  l’idée  de  stabilité  structurelle  (Thom,  1974 ;  1983).  Toutefois,  cette  stabilité  peut  être
apparente ; elle dépend une nouvelle fois du système de référence que l’on choisit. S’il s’agit d’un proces-
sus lent, voire très lent, les évolutions internes d’une forme seront difficilement perceptibles. Cependant, il
existe des évolutions brutales,  des discontinuités,  des « catastrophes » au sens de René Thom qui  peuvent
faire  émerger  une nouvelle  forme.  Dans  ce  cas,  la  morphostructure  devient  instable  et  est  source  de  nou-
veautés. La morphodynamique est donc un processus général au cœur des petits et des grands changements
de configuration spatiale.

L’étude  de  ces  morphostructures  est  au  cœur  de  la  géographie  structurale  de  Gilles  Ritchot  et
Gaétan Desmarais (2000). Dans ce cadre, une structure correspond à des « formes abstraites d’organisation,
qui ne sont pas réductibles à leurs diverses réalisations matérielles. La géographie structurale relève d’une
attitude  rationaliste  qui  distingue  soigneusement  les  objets  de  connaissance  théoriquement  construits  des
phénomènes  empiriques  accessibles  à  l’observation.  Elle  considère  ainsi  qu’il  ne  faut  pas  confondre  les
structures - qui sont des objets théoriques dont la réalité est rigoureusement démontrée - avec leurs manifes-
tations tangibles. Les structures sont des morphologies abstraites qui émergent dynamiquement du substrat
où  elles  s’incarnent.  Elles  conditionnent  la  stabilité  et  l’intelligibilité  de  leurs  réalisations  concrètes »
(Desmarais  et  Ritchot,  2000,  p. 11).  Autrement  dit,  c’est  la  structure  qui  maintient  la  stabilité  des  formes
géographiques.

Toutefois, une autre approche est possible : l’approche systémique qui conduit à s’interroger sur la
fonction et sur l’organisation d’une morphostructure (Chorley et Kennedy, 1971 ; Coque, 1993). Une forme
est-elle fonctionnelle, ou plus exactement participe-t-elle à l’organisation de la structure spatiale ? Ainsi, la
morphofonction  et  la  morphogénique  garantiraient  l’existence  d’une  morphostructure.  Cela  conduit  à
s’interroger sur l’utilité d’une forme, et à se placer dans une position utilitariste qui peut être dangereuse.

Cela étant, que l’analyse soit temporelle, ou qu’elle soit spatiale, on doit nécessairement définir une
échelle  d’observation  pour  chacune  de  ces  variables.  Comme  cela  a  été  montré  dans  la  première  partie,
l’intérêt pour la question des échelles en géographie a été de nouveau porté par la question de l’agrégation
« échelles et temporalités ». Les différents manuels ont signalé que les temps de la géographie tant physique
qu’humaine  avaient  des  échelles  qui  s’emboîtent  aussi  (Grataloup,  1996 ;  Reynaud  et  Baudelle,  2004 ;
Volvey, 2005), mais une question reste en suspens : celle correspondant à « échelles et spatialités ».

L’analyse  multi-échelle  transcende  donc  le  temps  et  l’espace,  mais  également  la  géographie
humaine  et  la  géographie  physique.  Aussi,  il  est  possible  de  mener  différentes  études  de  formes  géo-
graphiques de manière multi-échelle (donc fractale),  c’est-à-dire à la  dépendance d’échelle plus ou moins
forte des mesures d’un objet en fonction de sa résolution.
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5.3. L'analyse morphologique et les échelles

Les formes apparaissent et  disparaissent. La première partie de cette thèse a essayé de montrer les
liens  entre  formes,  limites  et  échelles :  les  formes  apparaissent  grâce  à  la  perception  d’une  limite.  Dans
cette thèse, la position qui sera défendue est que l’émergence de ces limites est plus une question d’échelles
qu’une  question  de  mouvement.  On  peut  appréhender  cette  idée  à  travers  l’idée  de  fond  et  de  forme
(Huyghe,  1971).  Si  on  prend  l’exemple  de  l’apparition  d’un  nuage,  cela  correspond  bien  à  l’émergence
d’une structure « blanche » sur un fond bleu. Toutefois, cette affirmation n’est valable que si l’on se trouve
à  l’extérieur  du  nuage,  mais  si  on  est  à  l’intérieur  du  nuage,  il  est  impossible  de  percevoir  ces  limites.
Autrement dit, l’opposition fond-forme n’est qu’une question d’échelles. De manière plus subtile, la télédé-
tection confirme à plus d’un titre cette idée. Pour détacher la structure bâtie d’une ville d’un fond multicol-
ore, il faut nécessairement avoir une résolution très fine, car tant que le grain reste grossier, il est impossi-
ble d’isoler avec certitude les « pixels de la ville ». Il faut donc mesurer ces effets d’échelles à travers des
dimensions fractales, par exemple.

De plus, il faut bien comprendre que la dimension fractale du fond n’est pas forcément la même que
celle de la forme étudiée. Le lien entre fond et forme peut être, en première approximation étudiée à travers
la comparaison de leurs dimensions fractales respectives.  Ces dernières caractérisent  l’espace des échelles
au  même  titre  que  le  temps  caractérise  le  mouvement.  Ce  sont  donc  des  indicateurs  indispensables  pour
comprendre l’organisation en échelles du monde.

Pour  conclure,  on  peut  proposer  un  tableau  de  synthèse  (Figure  29)  expliquant  ce  qu’est  la  mor-
phométrie en géographie générale. Jusqu’à présent, seule la catégorie du mouvement a été prise en consid-
ération. Cette thèse essayera d’introduire une nouvelle catégorie : celle des échelles. Ainsi, morphologie et
échelle  peuvent  être  étroitement  liées  par  une  démarche  quantitative.  Comme  cela  a  été  montré  dans  le
chapitre  4,  tous  les  outils  mathématiques  existent  pour  comprendre  et  pour  quantifier  ce  phénomène.  Les
chapitres suivants essayeront de l’illustrer.

Pour ce,  différentes analyses multi-échelles en géomorphologie et  en géographie urbaine vont être
menées.  Un  premier  chapitre  permettra  d’introduire  une  analyse  purement  spatiale  d’un  réseau  hydro-
graphique.  Un  second,  un  troisième  et  un  quatrième  chapitre  feront  de  même  avec  une  étude  mor-
phologique de villes. Toutes ces analyses présenteront une approche spatiale, l’approche temporelle, quant
à elle, sera étudiée en troisième partie de cette thèse.

Morphostructure Morphodynamique

Mouvement
Temps État stable État instable
Espace État stationnaire État non stationnaire

Échelle

Dimension fractale État stable d’échelle
État instable

d’échelle

Logarithme de la

longueur le long

de la fractale

État stationnaire

en échelle

État non stationnaire

en échelle

Figure 29. Mouvement et échelle en morphométrie
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6
L'analyse morphologique du réseau du bassin 
versant des Gardons

Roger  Moussa  et  Claude  Bocquillon  (1993)  ont  étudié  la  fractalité  du  bassin  versant  du  Gardon
d’Anduze.  Ils  avaient  calculé des dimensions fractales sur  la  forme du réseau hydrographique et  sur  celle
du bassin versant. Cette étude va étendre l’analyse morphologique, en la généralisation via les méthodes de
la relativité d’échelle, à l’ensemble des Gardons avec comme point aval limite le Pont de Ners.

6.1. Présentation des données

Les  informations  utilisées  pour  cette  étude  sont  issues  de  la  base  de  données  gratuite  I.G.N.©-
CARTHAGE  (CARtographie,  THématique  des  AGences  de  l’eau  et  du  ministère  de  l’Environnement),
disponible  sur  le  site :  http://services.sandre.eaufrance.fr/data/zonage/Hydrographie2007/.  Celui-ci  fournit
la  cartographie  du  réseau  hydrographique  français  sous  un  format  MapInfo©MapInfo  Corporation.  Le
système  d’information  géographique  possède  onze  couches :  cours_d_eau.mif ;  hydrographie_sur-
facique.mif ;  hydrographie_texture.mif ;  laisse.mif ;  nœud_hydrographique.mif ;  point_eau_isole.mif ;
region_hydrographique.mif ;  secteur.mif ;  sous_secteur.mif ;  troncon_hydrographique.mif ;  zone_hydro-
graphique.mif. 

La  couche  « cours_d_eau »  fournit  le  tracé  linéaire  des  cours  d’eau  principaux.  Toutefois,  les
données ne sont pas complètes. Elles sont limitées « à l’ensemble des tronçons hydrographiques touchant la
zone de livraison » (notice de Carthage). La couche « troncon_hydrographique » correspond à une décompo-
sition  des  cours  d’eau  officiels  en  branches  par  rapport  à  la  couche  précédente,  il  s’agit  d’ajouter  de
manière la plus exhaustive possible les cours d’eau intermittents et temporaires. La couche « hydrographie_-
surfacique »  fournit  la  surface  des  cours  d’eau  principaux,  ainsi  que  les  différentes  nappes  d’eau  libres
terrestres.

La  couche  « nœud_hydrographique »  correspond  à  une  modification  de  l’écoulement.  Elle  permet
de localiser les sources, les barrages, etc. La couche « point_eau_isole » situe les points d’eau non connec-
tés aux réseaux hydrographiques (château d’eau, réservoir, etc.). 

Les  couches  « region_hydrographique »,  « secteur »,  « sous_secteur »  et  « zone_hydrographique »
correspondent au périmètre des bassins versants élémentaires en suivant un jeu d’emboîtement d’échelles.

La  couche  « hydrographie_texture »  correspond  à  une  « zone  plate  au  drainage  complexe  dans
laquelle circule un ensemble de portions de cours d’eau formant un entrelacs de bras d’égale importance »
(notice de Carthage).

La couche « laisse » ne concerne  que les  littoraux maritimes.  Elle fournit  les  limites des hautes et
basses eaux.
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6.1.1. Critique de la base CARTHAGE

Cette base de données est  fort  utile,  car  toutes les  données connues sont  censées être répertoriées.
L’unique  défaut  qui  apparaît  de  manière  récurrente  est  un  problème  de  connexion  entre  les  différentes
branches du réseau qui sont parfois mal connectées.

D’après la notice, l’unité de référence est le mètre et la projection associée est le Lambert II étendu,
avec  pour  méridien  d’origine  le  méridien  de  Paris.  La  véritable  résolution  de  la  base  Carthage  varie  de
1 / 50 000 au minimum à 1 / 5 000 000 au maximum. Toutefois,  l’échelle la  plus fréquente reste l’échelle
minimale de 1 / 50 000 (http://www.observatoire-environnement.org/OBSERVATOIRE/acteur-donnee/don-
nees-ORE70.html).

6.1.2. Extraction des données sur Mathematica©Wolfram

Pour  mener  une  étude  morphologique  du  réseau  hydrographique  des  Gardons,  la  puissance  et  les
possibilités  de  calculs  de  MapInfo  sont  insuffisantes.  La  réalisation  d’une  analyse  spatiale  plus  avancée
nécessite un outil informatique plus puissant ; le logiciel retenu est Mathematica.

C’est  un  logiciel  de calcul  formel  qui  possède son  propre langage informatique.  Il  permet   de tra-
vailler  directement  sur  des  matrices  (images,  tableau  numérique,  etc.).  Il  possède plus  de  5 000  fonctions
préréglées dans son langage ; les possibilités de modélisation y sont dès lors très importantes. À côté de ces
5 000  symboles  courants,  il  existe  ce  que  l’on  appelle  des  « packages »  qui  sont  des  modules  de  calculs
spécifiques  à  certains  domaines  mathématiques.  Par  exemple,  il  existe  plusieurs  modules  de  statistique.
L’avantage  de  Mathematica  qui  peut  aussi  être  perçu   comme  son  plus  grand  défaut,  est  son  absence  de
fioriture. A l’ouverture d’une nouvelle feuille de calcul s’affiche un écran blanc. Tout est à créer, à penser,
à organiser. L’utilisateur doit écrire intégralement ses programmes. Le code étant un langage, on apprend à
chaque utilisation de nouvelles fonctions. Ainsi, rapidement, on crée des petites routines informatiques que
l’on peut injecter dans ces nouveaux programmes. On s’aperçoit alors que l’utilisation de logiciels tels que
MapInfo  et  ArcGIS  possèdent  des  « boîtes  noires »  relativement  importante,  ce  qui  n’est  pas  le  cas  avec
Mathematica qui est donc un outil indispensable à l’analyse spatiale.

Toutefois, si Mathematica est capable de générer une centaine de sorties différentes (images, films,
sons, tableau Excel, etc.), l’importation des données géoréférencées sur Mathematica est plus délicate. Pour
le  réseau  hydrographique  des  Gardons,  il  fallut  prendre  le  fichier  cours_d_eau.mif.  Ce  fichier  fournit  le
système de projection et décompose les différents objets vectoriels de la couche des données ainsi chaque
cours  d’eau  est  différencié.  Un  long  travail  de  découpage  des  données  sur  Excel  a  été  nécessaire  pour
individualiser les  cours d’eau,  car il  faut maintenir  l’ordre des objets du fichier mif  puisque les noms des
cours d’eau se trouvent dans un autre fichier (*.txt), mais l’ordre des noms suit celui des objets vectoriels.
Après  cette  réorganisation  des  données,  on  peut  les  enregistrer  sous  un  format  Mathematica  avec  des
accolades  pour  signaler  les  colonnes  et  les  lignes  de  la  matrice  des  vecteurs  composants  le  cours  d’eau.
Malheureusement, les cours d’eau ne sont pas des branches au sens de la théorie des graphes. Il faut donc
les découper à nouveau de façon à obtenir la portion d’un cours d’eau entre deux confluences. On peut pour
cela  utiliser  Mathematica  qui  fournit  une  solution  très  simple  avec  la  fonction  Union.  Autrement  dit,  le
passage d’un format S.I.G. à Mathematica demande beaucoup de patience, mais les résultats obtenus au fil
de ce texte montreront l’utilité de ce logiciel.

6.2. Cartographie

Grâce à la superposition d’une base des cartes numérisées au 1 / 25 000 de l’I.G.N. et CARTHAGE
(couche « cours_d_eau »), on peut créer des cartes sur le bassin étudié.
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Figure 30. Réseau hydrographique des Gardons (des sources jusqu'au pont de Ners)

La Figure 30 présente le réseau hydrographique principal du bassin versant des Gardons étudié. Le
réseau est composé de six cours d’eau principaux : la Salindrenque, le Gardon de Saint-Jean, le Gardon de
Sainte-Croix,  le  Gardon  de  Mialet,  le  Galeizon  et  le  Gardon  d’Alès.  Autour  de  ces  drains,  un  réseau  en
arêtes  de  poisson  se  déploie.  À  côté  de  ce  réseau  principal,  CARTHAGE possède  également  une  couche
avec tous les  cours  d’eau  secondaires (troncon_hydrographique).  Elle  présente  l’avantage d’être déjà  pré-
découpée  en  branches,  son  importation  dans  Mathematica  a  donc  été  plus  simple.  Pour  des  raisons  pra-
tiques, la première couche sera appelée RESEAU 1 et la seconde RESEAU 2. RESEAU 2 (1 694 branches)
n’est autre qu’une densification de RESEAU 1 (618 branches). La possibilité d’une comparaison entre les
deux  réseaux  apparaît  donc  très  intéressante,  mais  avant  il  faut  nécessairement  rappeler  quelques  lois  sur
les arborescences déterministes afin de mieux comprendre une arborescence réelle.

6.3. Données générales sur les arborescences

Un réseau hydrographique est une arborescence particulière. Toutefois, il n’échappe pas à certaines
règles mathématiques connues des arborescences qu’il faut rappeler.
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6.3.1. Définition d'une arborescence

D’après la théorie des graphes, un arbre est un graphe non orienté, connexe et sans cycle (Labelle,
1981 ;  Mathis,  2001 ;  Mathis,  2003a ;  Mathis,  2003b).  Par  contre,  on  appellera  arborescence  un  graphe
orienté,  connexe  et  sans  cycle.  Un  réseau  hydrographique  est  évidemment  une arborescence  car  l’écoule-
ment est orienté. Pour faciliter l’assimilation, il n’est pas rare de transformer le vocabulaire classique de la
théorie des graphes par une analogie avec la terminologie des « arbres naturels ». Ainsi, un sommet devient
un nœud et un arc devient une branche. Rappelons qu’un arc est une relation orientée entre deux sommets.
Dans le cas des arcs, la succession des sommets suit un ordre précis, dû à son orientation ; on parle alors de
chemin. Dans le cas des arborescences, il est donc possible de connaître l’intégralité des chemins possibles.

6.3.2. Construire une arborescence

Une arborescence est une structure topologique très simple,  mais dès qu’on la géométrise, c’est-à-
dire  que  l’on  en  fait  un  graphe  valué  par  des  distances,  elle  devient  une  structure  complexe  où  des  con-
traintes  d’optimalité  jouent  un  rôle  fondamental.  Si  l’on  prend  le  cas  d’école  d’un  « arbre  naturel » dans
une coupe à deux dimensions, on s’aperçoit que la gravité contraint le développement des branches, ce qui
fait  que  chaque  branche  n + 1  doit  nécessairement  être  une  réduction  de  la  branche  n.  Sachant  cela,  la
construction  d’un  arbre  déterministe  se  limite  à  trois  paramètres :  le  nombre  de  branches  k,  l’angle  de
référence entre ces branches a et le rapport de réduction 1 / g (Figure 31). Etant donné qu’une connaissance
de la position dans le plan est  fondamentale, l’utilisation des nombres complexes est une nécessité car les
formules sont considérablement simplifiées et beaucoup plus efficaces.

Figure 31. Embranchements élémentaires d'une arbre déterministe pour k = 2

Avec cet exemple (Figure 31), on met en évidence la décomposition suivante.

(1) Entre le vecteur AB et AM, il existe une homothétie telle que :

AM = 
1
g

AB

Il existe également une relation de colinéarité entre AM et BM', d’où AM = BM', ce qui donne en écriture
complexe :

zAM = 
1
g

zAB = zBM'

(2) Entre le vecteur BM' et le vecteur BC, il existe une rotation de centre B et d’angle a :

zBC = eiazBM'.
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(3) En combinant l’homothétie, la translation et la rotation, on obtient la formule directe :

zBC = 
1
g

eiazAB.

Cette  formule  est  nécessaire,  mais  pas  suffisante  pour  obtenir  une  arborescence.  En  effet,  il  faut
tenir compte du niveau de la branche n et de la position de la nouvelle branche m. Dans notre cas binaire, si
m est impair a sera positif et si m est pair, a sera négatif, ce qui donne la formule :

zn +1, m ' =
1
gn eia zn, m avec m ' pair

zn +1, m '+1 =
1
gn eia zn, m avec m ' + 1 impair

Ensuite, on peut très facilement obtenir les coordonnées cartésiennes. Il suffit de poser : zn  comme
étant le vecteur père et zn + 1, m et  zn + 1, m + 1 ses vecteurs fils.

zn = x + iy

zn+ 1 = X + iY

Après quelques calculs, on trouve que X et Y sont liés à x et y par :

X =
1
g
Hx cos a - y sin aL

Y =
1
g
Hx sin a + y cos aL

 si m est pair

ou

X =
1
g
Hx cos a + y sin aL

Y =
1
g
H-x sin a + y cos aL

 si m est impair

Malheureusement, ces formules ne se généralisent pas facilement pour k > 2, mais il est possible de
construire  un  algorithme  informatique  qui  permet  de  trouver  localement  les  vecteurs  et  de  tracer  l’arbre
comme celui de la Figure 34. Pour obtenir une généralisation, il suffit de définir les branches de l’arbre par
la base de numération, fournie par le nombre de branches (Mandelbrot, 1982 ; Mathis, 2001), tout comme
la courbe de Helge van Koch (Nottale et Schneider, 1984).

6.3.3. Arborescence  et base de numération

Les  arbres  ne  peuvent  être  définis  que  par  une  base  de  numération  incomplète.  Toutefois,  elle
permet de savoir sur quelle branche on se trouve de manière extrêmement précise.
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6.3.3.1. Le cas d'un double embranchement (base 2)

Figure 32. Arbre déterministe avec un générateur possédant deux embranchements

0 111 1110 10 101 11 010
1 1000 1111 10 110 11 011

10 1001 10 000 10 111 11 100
11 1010 10 001 11 000 11 101

100 1011 10 010 11 001 11 110
101 1100 10 011 11 100 11 111
110 1101 10 100 11 101

Figure 33. Base 2 et arbre déterministe à deux branches

En gras : les nombres servant à se repérer sur l'arbre.

La base de numération est un outil pratique pour savoir précisément sur quelle branche on se situe.
Pour  ce,  il  suffit  de  décomposer  le  nombre,  par  exemple  10101,  en  deux.  Le nombre  le  plus  à  droite  (1)
correspond à la position sur l’embranchement, celui de gauche est noté 0, celui de droite, 1. Pour 10101, on
est positionné sur la branche de droite. À partir de chiffre restant (1010), on peut remonter jusqu’à la mère,
et ainsi décomposer le chemin sur l’arbre. La branche fille de 10101 est 1010, qui a pour branche fille 101,
qui a pour branche fille 10, qui a branche fille 1, c’est-à-dire le tronc. Enfin, il faut savoir que cette décompo
sition engendre des pertes. La Figure 33 associée à la Figure 32, montre qu’un arbre auto similaire exprimé
en base de numération 2 ne possède qu’une perte numérique : le 0.
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6.3.3.2. Le cas d'un triple embranchement (base 3)

Figure 34. Arbre déterministe avec un générateur possédant trois embranchements

0 100 200 1000 1100 1200 2000 2100 2200
1 101 201 1001 1101 1201 2001 2101 2201

2 102 202 1002 1102 1202 2002 2102 2202
10 110 210 1010 1110 1210 2010 2110 2210
11 111 211 1011 1111 1211 2011 2111 2211

12 112 212 1012 1112 1212 2012 2112 2212
20 120 220 1020 1120 1220 2020 2120 2220
21 121 221 1021 1121 1221 2021 2121 2221

22 122 222 1022 1122 1222 2022 2122 2222

Figure 35. Base 3 et arbre déterministe à trois branches

En gras : les nombres servant à se repérer sur l'arbre

L’exemple de la base est utile pour comprendre le fait que l’on n’utilise pas tous les nombres d’une
base  de  numération  (Figure  34  et  Figure  35),  contrairement  à  la  courbe  de  Helge  van  Koch  (Nottale  et
Schneider,  1984).  La  perte  initiale  du  0  et  du  2  signifie  que  seuls  les  nombres  commençant  par  1  sont
nécessaires pour comptabiliser les branches.

De plus, à partir du nombre de niveaux, on peut connaître le nombre total de branches N.

N = 30 + 31 + 32 + ... + 3n

Cette suite converge. D’où

N = 
3n+ 1 - 1

2

Bien  entendu,  on  pouvait  également  le  faire  avec  l’arbre  possédant  deux  embranchements.  Dans  ce  cas,
N = 20 + 21 + 22 + ... + 2n = 2n+ 1 - 1.
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6.3.4. Arbre et log-périodicité

Un arbre est une structure log-périodique par excellence, car il combine un cycle de longueurs avec
un facteur de réduction. On obtient alors quelques formules très intéressantes pour étudier la morphologie
d’une structure arborescente (Nottale et alii, 2000).
6.3.4.1. Relations entre la longueur des branches et le niveau

Le nombre de branche Nn d’un niveau n vaut :

Nn = kn

Autrement dit, le niveau correspond à

n = 
ln Nn

ln k

D’après la Figure 31,  on définit  Xn  la  position d’un nœud, Ln  = Xn + 1  –  Xn  correspondant à la dis-

tance entre deux nœuds contigüs et Sn = ⁄k=0
n

Xk la longueur totale de X0 à Xn. 

On définit le rapport g de la manière suivante :

g = 
Xn + 1-Xn

Xn + 2-Xn + 1
 = 

Ln

Ln- 1
.

La longueur Ln de chacune des branches d’un même niveau n vaut :

Ln = 
1
gn L0

ce qui signifie que g vaut :

ln g = 
ln J L0

Ln
N

ln Nn
äln k

c’est-à-dire

g = k
ln I L0

Ln
M ë ln Nn  = kD où D = 2

6.3.4.2. Étude de la longueur d'un chemin - Longueur critique

La longueur d’un chemin amont-aval est appelée longueur totale Sn.

Sn = L0 + L1 + L2 + ... + Ln- 1 = L0 K1 + 1
g
+

1
g2 + ... +

1
gn- 1 O

Cette somme est égale à L0

J 1
g
Nn

-1

1
g
-1

 = L0J g

g - 1
N(1 - g-n ).

† Cas infini : la longueur critique LC

A l’infini, le terme J 1
g
Nn

 tend vers 0.

lim
nö+¶

J 1
g
Nn

 = 0+

La longueur totale converge donc à l’infini en une valeur appelée longueur critique LC = XC – X0.

LC = L0J g

g - 1
N

† Cas fini : la longueur totale Sn

Dans le cas fini, la longueur totale est donnée par l’équation suivante :
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Sn = L0J g

g - 1
N(1 - g-n ) = LC(1 - g-n )

or, comme LC = XC - X0 et LC – Sn = XC - Xn ,

XC - Xn = g-n(XC - X0)

c’est-à-dire

Xn = g-n(X0 - XC) + XC

ou encore

Ln - LC

L0-LC
 = g-n

6.3.4.3. Longueur totale d'une arborescence et nombre de branches

† Nombre total de branches

Le nombre total de branches d’un arbre déterministe fini est très simple à calculer.

NTOTAn
 = ⁄

i=0

n

k p = 
kn - 1
k - 1

  avec k ¥ 2

Il faut remarquer que, dans le cas le plus simple où k = 2, le nombre total de branche vaut 2n+ 1 – 1.

Il faut noter que dans le cas idéal où n tend vers l’infini, ce nombre tend également vers l’infini.

† Longueur totale de l'arborescence et longueur totale par niveau

La longueur totale de l’arborescence LTOTAn
 correspond à la somme des longueurs par niveau.

LTOTAn
 = LTOT0

 + LTOT1
 + ... + LTOTn

On peut alors étudier la longueur totale par niveau en posant Bn, le nombre de branches par niveau

(cf. l’étude de la courbe de Helge van Koch du chapitre 4).

LTOT0
 = L0

LTOT1
 = B1L1 = 

B1

g
L0

LTOT2
 = B2 L2 = 

B2

g2 L0

...

LTOTn - 1
 = Bn- 1Ln- 1 = 

Bn- 1

gn- 1 L0

Dès lors, la longueur totale de l’arborescence peut s’exprimer simplement.

LTOTAn
 = L0 + 

B1

g
L0 + 

B2

g2 L0 + ... + 
Bn- 1

gn- 1 L0 = L0K1 + B1

g
+

B2

g2 + ... +
Bn- 1

gn- 1 O
Il faut remarquer que si B = g alors L0  = LTOT1

 = ... = LTOTn - 1
. Autrement dit, la somme des longueurs par

niveau est égale à la longueur du tronc L0.

Dans le cas déterministe, le nombre de branches par niveau suit une relation exponentielle de base
k. D’où,

LTOTAn
 = L0K1 + k

g
+

k2

g2 + ... +
kn- 1

gn- 1 O = L0

J k

g
Nn

- 1

k

g
-1

On peut alors déterminer une longueur critique totale telle que :
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LTOTC
= L0J g

g- k
N

† Niveau, longueur totale par niveau et facteur d'échelle 1 / g

La longueur totale par niveau permet de calculer le facteur d’échelle par niveau.

gn = JL0
Bn

LTOTn

N
1

n

Cette formule d’estimer la valeur de g par la moyenne de toutes les valeurs gn, g.

À partir de là, on peut estimer la longueur critique d’une arborescence par LC telle que :

LC = L0J g

g - 1
N

6.3.5. Arbre et fractalité

La courbe de Helge van Koch sert de modèle de référence pour comprendre et  étudier la fractalité
d’un arbre.

Soit  g > 1,  alors  la  longueur  d’une  branche  d’un  niveau  Ln  =  
L0

gn  et  le  nombre  de  branche  de  ce

niveau Nn = kn. Pour un arbre déterministe, cela signifie que la longueur totale d’un niveau n vaut :

LTOTn
 = NnLn = kn 

L0

gn

Or, on sait que le nombre de branches k est lié au facteur d’échelle g par : k = gDF , d'où

LTOTn
 = L0g-ngnDF  = L0g-n g

n
ln k

ln g  = L0J 1
gn N

ln k

ln g
- 1

 avec une résolution ¶n = gn.

De plus, k = g2  où le 2 correspond à la dimension topologique. Autrement dit, DF est une vraie dimension

fractale puisqu’elle est définie à la limite de l’arbre (Mandelbrot, 1977). Cela signifie que, pour un arbre, la
dimension fractale est égale à la dimension topologique, s'il  se déploie dans le plan, sa dimension fractale
vaut donc 2.

On peut alors estimer une fractalité locale telle que :

Dn = 
ln k

ln gn

or k est inconnue. On peut alors utiliser Bn comme estimateur.

Dn = 
ln Bn

ln gn

6.4. Caractéristiques fractales et non fractales de l'arborescence d'un réseau 
hydrographique

Très tôt, les particularités de la géométrie des réseaux hydrographiques ont été perçues par Léonard
de Vinci (1949) ou Cecil Murray (1927). Toutefois, ce fut Benoît Mandelbrot (1977 ; 1982) qui montra que
cette géométrie appartenait à la géométrie fractale.
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6.4.1. La « loi » de Léonard de Vinci

Léonard de Vinci avait remarqué que « toutes les branches d’arbres, à quelque degré de leur hauteur
qu’on le réunisse, sont égales à la grosseur du tronc. Toutes les ramifications des eaux, douées d’un mouve-
ment  égal,  à  chaque  degré  de  leur  longueur  égalent  la  grosseur  du  fleuve,  leur  père »  (in  Nottale  et  alii,
2000, p. 185). De ce constat, Léonard de Vinci (1949) établit une « loi » unissant le rayon r d’un cours (la
distance moyenne entre deux berges) et le nombre moyen d’embranchements k  (en règle général,  pour les
cours d’eau, il y en a deux). Elle s’exprime de la manière suivante :

krn+ 1
2 = rn

2

c’est-à-dire

k = J rn

rn+ 1
N2

ce qui correspond si k = 2 et l’angle a entre r1 et r2 vaut 
p
2

 au théorème de Pythagore.

À cette condition, si l’on pose une condition d’autosimilarité, une autre loi apparaît entre le rayon r
d’un cours d’eau et la longueur du cours L  (la distance entre deux confluences). Le rapport entre le rayon
père  et  le  rayon  fils  est  alors  constant ;  il  en  va  de  même  pour  le  rapport  entre  la  longueur  mère  et  la
longueur fille. Ainsi, l’égalité suivante entre ces rapports devient évidente.

rn

rn+ 1
 = 

Ln

Ln+ 1
 = g

or

k = J rn

rn+ 1
N2

d’où la relation entre le nombre d’embranchements et la longueur d’un cours d’eau :

g2 = k

Benoît  Mandelbrot  (1977 ;  1982)  montra que l’exposant  2  était  une dimension  fractale d’un arbre
déterministe.  Ainsi,  on  retrouve  d’une  autre  manière  les  formules  précédentes.  Cependant,  l’arbre  que
consiste un réseau hydrographique n’est pas autosimilaire pour deux raisons : la première vient du fait que
le nombre de branches par niveau ne suit pas systématiquement une loi puissance ; la seconde est que deux
longueurs  entre  deux  confluences  ne  possèdent  pas  forcément  un  facteur  d’échelle  (agrandissement  ou
réduction)  constant.  À  travers  différentes  analyses  appliquées  sur  le  réseau  hydrographique  des  Gardons,
cette partie va essayer de mettre en lumière les caractéristiques fractales et non fractales d’une structure non
autosimilaire.

Figure 36. Rapport entre le rayon et la longueur des branches d'un arbre
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6.4.2. La loi de Cecil Murray

Pour Cecil D. Murray (1927), les branches de niveau n + 1 ont plus de place pour le passage d’un
fluide que la branche n qui les alimente. On appelle les rayons des deux branches de niveau n + 1, d1 et d2

et le rayon de la branche mère n, d0. Pour lui, d’après la loi de Poiseuille, on peut écrire :

d0
3 = d1

3 + d2
3

Autrement  dit,  les  facteurs  de  la  loi  sont  une  base,  k = 2,  et  une  dimension  fractale,  D = 3.  Le
rapport  d’échelle  g  vaut  alors  1,260.  Cette  loi  permet  d’optimiser  le  flux  dans  un  arbre  par  rapport  à  sa
résistance (Murray, 1927 ; Mandelbrot, 1982 ; Bejan et Lorente, 2004). Cette valeur de g est donc fondamen
tale, si l’arborescence possède une base 2.

6.4.3. Les méthodes de mise en arborescence du réseau

D’après  le  point  précédent,  les  liens  entre  arborescence  et  fractalité  sont  étroits,  mais  il  existe  au
moins deux façons de construire un arbre :  la méthode ascendante que l’on appellera classification hiérar-
chique  ascendante  des  confluences  et  la  méthode  descendante  qui  correspond  à  celle  de  Robert  Elmer
Horton.  Toutes  les  deux  permettent  de  mesurer  des  dimensions  fractales  « internes »  au  réseau  hydro-
graphique. Toutefois, avant de calculer ces dimensions, il est bon de calculer une dimension fractale « ex-
terne » via  la méthode par comptage de boîtes carrées qui servira de référence. En effet, estimer la dimen-
sion  fractale  est  ce  qu’il  y  a  de  plus  facile  pour  les  arborescences  non  autosimilaires.  Le  nombre  de
branches k  est  souvent  égal  à  2  pour un réseau  hydrographique.  À partir  de là,  on  peut  déduire le  facteur
d’échelle g, et ainsi peut-être retrouver la formule fondamentale :

gD = k.

6.4.3.1. Le calcul d'une dimension fractale par comptage de boîtes carrées du réseau

Il faut commencer par estimer le paramètre le plus simple : la dimension fractale sur le RESEAU 1
et le RESEAU 2. La Figure 37 est une figure classique que l’on obtient lorsque l’on mesure la dimension
fractale  d’un  réseau  hydrographique  par  comptage  de  boîtes  carrées  (Rodriguez-Iturbe  et  Rinaldo,  1997 ;
Fardin  et  alii,  2001).  Toutefois,  la  plupart  des  auteurs  n’ont  pas  compris  la  signification  profonde  de  ce
graphique. En effet, beaucoup l’ont interprété (Tarboton et alii, 1988 ; La Barbera et Rosso, 1989 ; Rosso et
Bacchi,  La  Barbera,  1991 ;  Garcia-Ruiz  et  Otálara,  1992)  comme se  partageant  en deux  dimensions  frac-
tales  que  l’on  pouvait  combiner  (La  Barbera  et  Rosso,  1989 ;  Rosso  et  alii,  1991 ;  Quadros  Da  Silveira,
2006). En réalité, la relativité d’échelle montre qu’il s’agit ici d’un régime fractal - non fractal à une transi-
tion  (cf.  chapitre  4).  En  effet,  si  l’on  prend  l’exemple  de  la  Figure  37,  le  premier  domaine  possède  une
dimension fractale valant 1,007 ± 0,007 c’est-à-dire DF  = 1, donc il s’agit de la dimension topologique de
l’objet ; dans cette zone, il est non fractal. De ce fait, ce graphique montre qu’un objet « réel » n’est jamais
totalement fractal : il l’est potentiellement (ici entre ln ¶ = 6,4 et ln ¶ = 10,4). La valeur qui met un terme au
domaine non fractal et qui débute le domaine fractal (ici ln ¶ = 6,4), correspond à une échelle de coupure.
Pour les modèles fractal - non fractal à une transition, en deçà de cette échelle, l’objet est fractal, au-delà, il
ne l’est plus.
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Figure 37. Calcul de la dimension fractale par comptage de boîtes carrées du RESEAU 1

E : la résolution en mètre ; N(E) : le nombre de boîtes.
L'échelle de coupure entre la transition fractal - non fractal vaut 609 m.
L'étendue de l'objet est de 42 200 m.

Figure 38. Calcul de la dimension fractale par comptage de boîtes carrées du RESEAU 2

E : la résolution en mètre ; N(E) : le nombre de boîtes.
L'échelle de coupure entre la transition fractal - non fractal vaut 425 m.
L'étendue de l'objet est de 42 200 m.

Sur la Figure 37 et la Figure 38, les deux régimes apparaissent clairement et indiquent des valeurs
très proches 1,007 ± 0,007 et 0,991 ± 0,008 pour le domaine non fractal, et 1,646 ± 0,010 et 1,695 ± 0,010
pour le domaine fractal. Ces résultats peuvent être surprenants, car on aurait pu penser que le RESEAU 2,
de par  sa plus  grande précision,  admettrait  une structure  fractale strictement  invariante d’échelle,  mais ce
n’est pas le cas. On observe des dimensions fractales ayant des ordres de grandeurs comparables. La seule
variable qui change est l’échelle de coupure : 609 m pour le RESEAU 1, et 425 m pour le RESEAU 2. Ces
échelles sont donc fondamentales. En effet, elles peuvent s’interpréter comme une mesure de la qualité de
l’information  géographique  contenue  dans  chacune  des  couches  S.I.G.  Ainsi,  la  multiplication  par  un
facteur trois des drains entre le RESEAU 1 et le RESEAU 2 améliore l’information géographique, mais ne
change rien à la structure en échelles observée.

De plus,  chaque classement  des  branches  du  réseau  hydrographique des  Gardons  permet  le  calcul
d’une dimension fractale « interne ».
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6.4.3.2. La méthode hortonienne

La classification actuelle dite de Horton qui est  en fait  celle d’Arthur N. Stralher (1954a ; 1954b ;
1957)  et  de  Stanley  A.  Schumm  (1956),  suit  un  ordre  descendant.  Les  sources  (ou  lieux  d’écoulement
concentré initial) sont les points de départ ; elles sont numérotés 1. L’algorithme est le suivant : chaque fois
que  deux  affluents  de  même  ordre  n  se  connectent  leur  confluent  passera  à  l’ordre  n + 1,  mais  si  deux
affluents d’ordre différent (n, m avec m > n) se connectent alors leur confluent prendra l’ordre le plus élevé
des affluents c’est-à-dire m. En règle générale, cette arborescence comporte peu de niveaux. C’est le cas du
réseau des Gardons.

† Classification de Horton-Schumm-Strahler

En hydrologie, il existe déjà des indicateurs pour mesurer le rapport d’échelle 1/g. On peut d’abord
estimer  un  rapport  de  longueur  (RL)  de  Stanley  Schumm  (1956)  repris  par  Arthur  Stralher  en  1957.  Il
correspond  au  rapport  entre  la  moyenne  des  longueurs  du  niveau  n + 1  et  la  moyenne  des  longueurs  du
niveau n. Ensuite, le rapport de confluence (RC) de Robert Elmer Horton (1945) est calculé comme étant le
rapport entre le nombre de branches n et le nombre de branches n + 1.

RLn = 
LTOTn

Bn
 ä 

Bn+ 1

LTOTn + 1

RCn = 
Bn

Bn+ 1

† Analyse de Horton et dimension fractale

L’étude approfondie des rapports RL et RC permet de calculer une dimension fractale « interne » au
réseau hydrographique des Gardons.
† Étude du RESEAU 1

La Figure 39 montre une ordination de Horton à cinq ordres. Pour obtenir la dimension fractale, il
suffit  de  s’aider  de  la  Figure  40.  Si  on  linéarise  les  données  en  passant  en  logarithme  et  que  l’on  met  la
longueur moyenne en fonction de l’effectif, la pente de cette droite donne une approximation de la dimen-
sion  fractale.  Autrement  dit,  l’effectif  joue  ici  le  rôle  d’une  résolution  (Mandelbrot,  1977 ;  Mandelbrot,
1982 ;  La Barbara  et  Rosso,  1989 ;  Garcia-Ruiz  et  Otálora,  1992 ;  Prusinkiewicz  et  Hammel,  1993 ;  Tar-
boton,  1996 ;  Rodríguez-Iturbe  et  Rinaldo,  1997,  p. 127 ;  Sagar  et  alii,  1998 ;  Dodds  et  Rothman,  1999 ;
Dodds et Rothman, 2000).

N = N0J XL0\
XL\ N

D

soit :

ln N = ln N0 + D ln J XL0\
XL\ N

La pente locale vaut alors :

D = 
ln N1 - ln N2

ln XL1\- ln XL2\  = 
ln J N1

N2
N

ln J XL1\
XL2\ N

 = 
-ln J N2

N1
N

ln J XL1\
XL2\ N

 = -
ln RC

ln RL
 = D

où RL n’est autre que le rapport de longueur de Schumm RL et RC le rapport de confluence RC de Horton. Ici,

DT  vaut  bien  évidemment  1.  Le  ratio  -
ln RC

ln RL
 donne  une  approximation  de  la  dimension  fractale.  Pour  le

réseau pérenne, sa valeur est de D1 = 1,683 ± 0,561.

92   



Figure 39. Classification de Horton appliquée aux Gardons

Ordre Effectif Longueur moyenne des drains de l'ordre HmL
1 308 2 002,43 ≤ 107,60

2 66 3 040,95 ≤ 447,70
3 10 14 684,20 ≤ 4 116,59
4 3 35 538,20 ≤ 10 362,22

5 1 12 746,40

Figure 40. Relation entre l'ordre, l'effectif et la longueur

† Étude du RESEAU 2

La Figure 41 montre une ordination de Horton à six ordres. Le simple fait d’avoir ajouter à peu près
1 000 branches n’a introduit qu’un seul ordre. On calcule la dimension fractale de la même manière (Figure
42) et on obtient une valeur de D2 = 1,831 ± 0,301 pour le réseau « complet ».
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Figure 41. Classification de Horton appliquée aux Gardons

Ordre Effectif Longueur moyenne des drains de l'ordre HmL
1 661 1 343,95 ≤ 41,45
2 147 1 947,99 ≤ 137,47
3 32 5 165,49 ≤ 941,15

4 8 17 227,10 ≤ 5 368,14
5 3 27 777,10 ≤ 9 684,01
6 1 17 575,50

Figure 42. Relation entre l'ordre, l'effectif et la longueur

† Comparaison entre D1 et D2

Les  valeurs  de  D1  et  D2  possèdent  des  erreurs  statistiques  très  élevées.  Cela  s’explique par  le  fait

que les  branches d’ordre 5  pour D1  et  les  branches d’ordre 6  pour D2  ne sont  pas complètes, en  terme de

longueur, car la branche s'étend au-delà du Pont de Ners. Le plus simple est de les éliminer de la distribu-
tion. Ce faisant, l’amélioration des écarts-types est notable : pour D1 = 1,492 ± 0,199 et D2 = 1,620 ± 0,166.

Ces nouvelles valeurs pour D1 et pour D2 sont compatibles.
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† Améliorer la qualité d'une mesure de la dimension fractale

Pour  obtenir  l’amélioration  de  la  qualité  d’une  mesure,  il  suffit  d’opérer  une  série  de  mesures
indépendantes,  c’est-à-dire  des  mesures  d’un  objet   effectuées  par  différentes  méthodes  sur  la  même
représentation  ou  sur  différentes  représentations  par  la  même  méthode.  Ainsi,  pour  comparer  les  valeurs
obtenues  par  la  méthode  de  Horton-Schumm-Strahler,  la  méthode  de  comptage  de  boîtes  carrées  a  été
retenue.

Dimension fractale Erreur
RESEAU 1 1,646 0,010

RESEAU 2 1,695 0,010

Figure 43. Tableau de mesures des dimensions fractales par comptage de boîtes carrées pour les deux représentations du réseau

La  Figure  43  présente  des  résultats  nettement  plus  précis  que  ceux  obtenus  par  la  méthode  de
Horton-Schumm-Strahler.  Ainsi,  on  peut  comparer  les  différentes  valeurs  de  mesures  de  la  dimension
fractale obtenues.

Dimension fractale Erreur
Horton 1,492 0,199

Comptage de boîtes 1,646 0,010

Figure 44. Tableau de comparaison entre les mesures du RESEAU 1

Dimension fractale Erreur
Horton 1,620 0,166

Comptage de boîtes 1,695 0,010

Figure 45. Tableau de comparaison entre les mesures du RESEAU 2

La Figure 44 et la Figure 45 montrent que les résultats obtenus par la méthode de Horton-Schumm-
Stralher  et  celle  par  comptage de  boîtes  carrées sont  compatibles.  Toutefois,  la  méthode par  comptage de
boîtes  carrées  reste  largement  plus  précise  dans  l’estimation  de  la  dimension  fractale  du  réseau  hydro-
graphique des Gardons.

† Comparaison de toutes les mesures

De toutes ces mesures, on peut en déduire que, d’une part, la méthode de Horton-Schumm-Strahler
est  moins  précise  que la  méthode de  comptage de  boîtes  carrées (Figure  44 et  Figure 45),  et  que,  d’autre
part, la comparaison des valeurs des deux calculs obtenues sur le RESEAU 1 et sur le RESEAU 2 montrent
que le réseau hydrographique des Gardons a une structure en échelle qui est invariante puisqu’en ajoutant
des branches la dimension fractale ne se transforme pas.

Ainsi, dans une approche multi-échelle d’un réseau hydrographique, il faut comparer la dimension
fractale  par  comptage  de  boîtes  carrées  et  la  dimension  fractale  définie  par  les  lois  de  Horton-Schumm-
Strahler.
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6.4.3.3. La classification hiérarchique ascendante des confluences (C.H.A.C.)

La classification hiérarchique ascendante des confluences (C.H.A.C.)  est  construite d’une manière
très  simple :  à  chaque  confluence,  une  nouvelle  branche  apparaît.  Ainsi,  le  nombre  de  niveaux  est  plus
élevé que dans la classification de Robert Elmer Horton. On compte 63 niveaux pour le RESEAU 1 (Figure
46) et 93 niveaux pour le RESEAU 2 (Figure 47). La C.H.A.C. permet de faire des mesures sur un effectif
de branches plus grand,  ce qui fait  que la construction d’indices locaux permettant  d’étudier la  géométrie
du  réseau  hydrographique  est  meilleure.  Le  premier  indice  permet  d’étudier  le  facteur  d’échelle  entre  la
longueur d’une branche le long de celle-ci LC  et la distance à vol d’oiseau entre les deux extrémités de la
branche (sources ou confluences) VO.
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Figure 46. Arbre du RESEAU 1
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Figure 47. Arbre du RESEAU 2

† Calcul de la dimension fractale « interne » du réseau

La  méthode  de  calcul  de  la  dimension  fractale  « interne » de  la  C.H.A.C.  est  identique  à  celle  de
Robert  Elmer  Horton.  On  calcule  des  RL  et  des  RC.  La  mise  en  relation  des  deux  donne  un  ajustement
linéaire  dont  la  pente  correspond  à  la  dimension  fractale.  Pour  le  RESEAU  1,  la  valeur  obtenue  est
1,584 ± 0,125.  Pour  le  RESEAU 2,  la  valeur  obtenue est  1,469 ± 0,122.  Les  deux  mesures  sont  compati-
bles.  On  retrouve  une  nouvelle  fois  une  valeur  de  la  dimension  fractale  autour  de  1,6,  mais  ces  résultats
sont toujours moins précis que la dimension fractale par comptage de boîtes carrées.
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† Le rapport LC/VO

Le rapport LC/VO correspond à un indice de tortuosité (Lanco Bertrand, 2005) ; dans la littérature
de la  géomorphologie,  on  dira  plutôt  indice  de  sinuosité.  Il  est  possible  d’en  faire  une  statistique  (Figure
48).  On  constate  que,  pour  le  RESEAU 1  ou  le  RESEAU 2,  les  distributions  sont  normales.  On  constate
qu’une  constante  apparaît :  le  facteur  d’échelle  moyen  que  l’on  peut  appliquer  aux  branches  du  réseau
hydrographique des Gardons est autour de 1,5 quelle que soit la densité du réseau choisie. Autrement dit, le
passage du RESEAU 1 au RESEAU 2 ne change pas cette valeur.  Toutefois, l’écart-type de la distribution
a été divisé par 2, ce qui est considérable. Ce facteur d’échelle constant permet de rendre hautement signifi-
catif l’écart-type à la moyenne (Figure 49). Il faut rappeler que l’écart quadratique à la moyenne sXX \  est le

rapport entre l’écart-type de la distribution observée s et la racine carrée de l’effectif n de la distribution.

sXX \ = s
n

RESEAU 1

n = 618

Arrondi : 0,001

Moyenne : 1,549

Écart-type : 0,156

Arrondi : 0,01

Moyenne : 1,55

Écart-type : 0,16

Arrondi : 0,1

Moyenne : 1,5

Écart-type : 0,2

RESEAU 2

n = 1694

Arrondi : 0,001

Moyenne : 1,473

Écart-type : 0,135

Arrondi : 0,01

Moyenne : 1,47

Écart-type : 0,14

Arrondi : 0,1

Moyenne : 1,5

Écart-type : 0,1

Figure 48. Distribution de probabilité du rapport LC/VO

En abscisse, la valeur a été centrée et réduite. En ordonnée, on trouve l'effectif des valeurs observées.
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n
Écart-type de

la distribution

Moyenne du

facteur d'échelle

Erreur sur

la moyenne

618 0,156 1,549 0,006

1 694 0,135 1,473 0,003

Figure 49. Estimation du facteur d'échelle LC/VO

Dès lors, il serait intéressant de voir si cette constante est stable. Pour ce, il  faut construire un autre
indice qui variera en fonction du drain étudié.

† La variation du rapport LC/VO de confluence en confluence

Lorsque l’on réalise le rapport LC/VO sur les branches, est-il aussi pertinent si on l’applique à des
branches  combinées ?  Pour  le  vérifier,  deux  points  de  départ  sont  possibles :  le  point  servant  d’exutoire
(Pont de Ners) et les points représentant les sources.

LCk

VOk

 = 

⁄
i=1

k

LCi

VO ⁄ i=1
n

LCi

 avec k = {1, 2, ..., n}

où k représente le niveau intermédiaire.
† Variation du rapport LC/VO de confluence en confluence du Pont de Ners aux sources

Quel  que soit  le  réseau,  quelle  que soit  la  source,  si  l’on  reporte  sur  un  graphique,  la  distance  au
Pont  de Ners et  le  rapport  intermédiaire LC/VO  obtenu,  on s’aperçoit  que le rapport converge rapidement
(vers 5 km) vers la valeur 1,5 (annexe 20-2).
† Variation du rapport LC/VO de confluence en confluence des sources au Pont de Ners

Quel que soit le réseau, quelle que soit  la source, si l’on reporte sur un graphique, la distance à la
source et  le  rapport intermédiaire LC/VO  obtenu,  on s’aperçoit  que le rapport  converge moins rapidement
que pour  le  cas  précédent  (vers  10 km)  vers  la  valeur  1,5  (annexe  20-2).  Toutefois,  les  courbes  montrent
des  rapports  qui  peuvent  être  très  importants  autour  de  3,4,  voire  5,6.  Autrement  dit,  le  facteur  d’échelle
organisant  le  réseau  est  plus  stable  si  on  l’utilise  comme  point  de  référence  l’exutoire  du  réseau.  Cela
montre que la C.H.A.C. présente une classification plus pertinente que celle de Robert Elmer Horton.

Pour conclure, l’étude de ces indices, on peut également effectuer à l’instar du relevé de talweg, un
relevé du rapport LC/VO par branche et par chemin parcouru (annexe 20-2).

† Les relevés LC/VO

Il est possible de réaliser des relevés de LC/VO analogiques à des relevés de talwegs (annexe 20-2).
Pour la plupart des graphiques qu’on analyse le RESEAU 1 ou le RESEAU 2, on observe un pic au centre
du  graphique  (Figure  57  ou  Figure  59  par  exemple).  Ce  pic  correspond  morphologiquement  à  la  zone
centrale (Figure 30) qui possède beaucoup de méandres.

Ainsi,  l’indice  de  tortuosité  est  une  estimation  du  rapport  d’échelle  g  très  précise.  En  effet,  les
analyses précédentes ont montré que le rapport LC/VO était stable quel que soit la qualité des informations
du réseau hydrographiques. Il correspond au facteur d’échelle g recherché (Tokunaga, 1994 ; Veltri et alii,
1996).  De  même,  la  dimension  fractale  est  invariable.  Si  on  arrondit  le  facteur  d’échelle  à  g  =  1,5  et  la

dimension  fractale  à  D  =  1,7  alors  la  relation  fondamentale  de  Léonard  de  Vinci,  généralisée  par  Benoît
Mandelbrot, donne :

gD = 1,5 1,7 º 2,0 º k

Cette  relation  est  donc  vérifiée  pour  une  arborescence  non  autosimilaire.  À  cela,  il  faut  ajouter  que  cette
valeur de 1,7 a été trouvée de manière indépendante lors d’une étude du relief sous-jacent au réseau hydro-
graphique des Gardons (Nottale et alii, 2009 ; 2010). Qu’en est-il de la log-périodicité ?
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† Les branches, la log-périodicité et la dimension fractale

Une arborescence déterministe et  autosimilaire peut se caractériser par  une log-périodicité interne.
Qu’en  est-il  des  fractales  non  autosimilaires ?  Pour  rendre  intelligible  cette  sous-partie,  une  comparaison
systématique sera menée entre ce qui est observé et ce qui est connu des fractales déterministes.
† Étude statistique niveau - nombre de noeuds

L’approche classique consiste à  mettre en relation les  niveaux observés et  le  nombre de branches.
Dans  ce  cas  des  réseaux  hydrographiques,  les  branches correspondent  à  la  liaison  topologique entre  deux
nœuds. Un nœud peut être soit une confluence, soit une source. Dans le cas d’une structure fractale stricte-
ment autosimilaire, le nombre de branches croît à l’infini (Figure 50), tandis que dans le cas d’une arbores-
cence  réelle,  le  nombre  de  branches  est  fini  (Figure  51).  Aussi,  il  croît  et  décroît  en  suivant  un  modèle
parabolique (Figure 51).

Figure 50. Arborescence : niveaux et branches dans le cas de structure auto-similaire
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lnHnbL = -0,014H≤ 0,011Lln2HnL - 0,870H≤ 0,075LlnHnL + 0,994H≤ 1,069L
RESEAU 1

lnHnbL = -0,009H≤ 0,001Lln2HnL - 0,752H≤ 0,067LlnHnL + 8,295H≤ 1,396L
RESEAU 2

Figure 51. Arborescence : modèle parabolique observé

n : niveau ; nb : nombre de branches

† Étude statistique des longueurs des branches

Précédemment,  une relation entre les  niveaux et  leur  nombre de branches a été trouvé.  Cette rela-
tion renvoie à la structure topologique de l’arbre. Une autre étude naturelle, plus géométrique, est la distribu-
tion  de probabilité  des  longueurs des  branches.  Pour le  RESEAU 1,  la  moyenne vaut  1 778,37 ± 61,23 m
tandis que pour le RESEAU 2, elle vaut 931,30 ± 17,33 m. On remarque qu’entre les deux valeurs, il existe
un  facteur  trois.  Une  nouvelle  fois,  on  retrouve  l’amélioration  qualitative  du  RESEAU  2  par  rapport  au
RESEAU 1.

Les distributions de probabilité observées ressemblent à une courbe de Gauss tronquée (Figure 52 et
Figure 53).
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Arrondi : 1

Moyenne : 1 778

Écart-type : 1 522

Arrondi : 10

Moyenne : 1 780

Écart-type : 1 520

Arrondi : 100

Moyenne : 1 800

Écart-type : 1 500

Arrondi : 1 000

Moyenne : 2 000

Écart-type : 2 000

Figure 52. Statistique des longueurs des branches du RESEAU 1 (n = 618)

En abscisse, la valeur a été centrée et réduite. En ordonnée, on trouve l'effectif des valeurs observées.
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Arrondi : 1

Moyenne : 931

Écart-type : 713

Arrondi : 10

Moyenne : 930

Écart-type : 710

Arrondi : 100

Moyenne : 900

Écart-type : 700

Arrondi : 1 000

Moyenne : 1 000

Écart-type : 1 000

Figure 53. Statistique des longueurs des branches du RESEAU 2 (n = 1 694)

En abscisse, la valeur a été centrée et réduite. En ordonnée, on trouve l'effectif des valeurs observées.

† Log-périodicité des branches

De  toutes  ces  analyses,  il  est  difficile  d’établir  formellement  la  log-périodicité  du  réseau  hydro-
graphique des Gardons. Quelques indices comme l’existence d’un facteur d’échelle constant et une dimen-
sion  fractale  constante  laissent  transparaître  son  existence,  du  moins  en  moyenne.  Toutefois,  ce  n’est
qu’une spéculation qu’il faudra vérifier.

† L'irrégularité et la fractalité

Le réseau hydrographique des Gardons est fractal. Plusieurs méthodes l’ont prouvé, mais qu’en est-
il de ces branches d’une part et de ces chemins d’autre part ?
† Calcul d'une dimension fractale par branche

Il  est  possible de calculer  une « dimension fractale locale » par  la  méthode de comptage de boîtes
carrées pour chacune des branches (annexe 20-2). Ce calcul a été effectué à partir des points. Pour éviter la
mesure d’une dimension fractale d’un nuage de points, il  faut  définir  une échelle d’arrêt  minimale et  une
échelle  d’arrêt  maximale.  L’échelle  d’arrêt  minimale  est  la  plus  petite  distance  à  vol  d’oiseau  entre  deux
points  qui  définissent  une  portion  de  la  branche  mesurée.  L’échelle  d’arrêt  maximale  correspond  à  la
distance à vol d’oiseau entre le premier point de la branche et le dernier point de la branche. Cette méthode
permet  de « tromper » l’ordinateur  afin  qu’il  mesure bien la dimension fractale d’une branche,  et  non des
points qui la composent.
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Sans  regarder  les  valeurs  numériques  des  dimensions  fractales,  une  typologie  des  graphiques
obtenus peut être dressée. La première catégorie concerne les courbes comme celle de la branche n°1403-
RESEAU 1 (Figure 54). La gamme d’échelle est peu étendue : exp(2) º 7 m. Autrement dit, il est impossi-
ble de prétendre que la pente obtenue dans un espace bi logarithmique donne effectivement une dimension
fractale. La seconde catégorie est caractérisée par des courbes comme celle de la branche n°401-RESEAU
1 (Figure 55), où la gamme d’échelle est un peu plus grande : exp(5) º 148 m. La troisième catégorie, plus
rare,  s’applique  à  des  courbes  comme  celle  de  la  branche  n°803-RESEAU  1  (Figure  56)  où  la  gamme
d’échelle  commence  à  être  plus  importante :  exp(6) º 403 m,  mais  pas  suffisante  pour  établir  de  manière
certaine  la  dimension  fractale,  puisqu’il  faudrait  idéalement  posséder  une  gamme  d’échelle  minimale  de
104-105 du fait que, pour appréhender les transitions, il faut une longueur minimale de 50 unités de mesure.
Autrement dit, si on veut percevoir deux transitions, qui correspond au cas le plus courant, il faut nécessaire-

ment  50  ä  50  ä  50  unités  de  mesure,  soit  environ  105.  Toutefois,  on  supposera  que  les  valeurs  obtenues
représentent effectivement des dimensions fractales locales.

Si  l’on  dresse  la  statistique  des  dimensions  fractales  locales,  on  s’aperçoit  que  les  valeurs  sont
centrées autour de la moyenne, c’est-à-dire 1,01 ± 0,02 pour le RESEAU 1 et 1,00 ± 0,02 pour le RESEAU
2. Cette valeur  hautement significative montre une fois  de plus que l’irrégularité d’une structure ne suffit
pas pour caractériser une fractale. Ici, chaque branche est caractérisée par une non fractalité.

Figure 54. Exemple d'un graphique bi logarithmique où la gamme d'échelle est courte

Figure 55. Exemple d'un graphique bi logarithmique où la gamme d'échelle est moyenne

  105



Figure 56. Exemple d'un graphique bi logarithmique où la gamme d'échelle est correcte

† Calcul d'une dimension fractale par chemin

En suivant la même méthode que le paragraphe précédent, il est possible de calculer une dimension
fractale  par  comptage de boîtes  carrées  de  l’ensemble  du  parcours  entre  une source et  le  point  d’exutoire
(Pont de Ners). On pourrait supposer qu’avec des longueurs nettement supérieures à celle des branches, il
existe une dimension fractale non entière au niveau des chemins. La distribution statistique des dimensions
fractales  obtenue  sur  les  chemins  est  en  réalité  centrée  autour  d’une  moyenne  de  1,02 ± 0,03  pour  le
RESEAU 1 et 1,01 ± 0,02 pour le RESEAU 2 (annexe 20-2). Autrement dit, comme les branches, la struc-
ture des chemins est non fractale. Une nouvelle fois, l’irrégularité apparente d’une structure ne suffit pas à
définir une fractale. Les chemins ont un tracé caractérisé par leur non fractalité.

Cela  montre  d’une  part  qu’une  structure  est  à  la  fois  fractale  et  non  fractale.  Tout  objet  géo-
graphique  porte  ces  deux  natures.  La  fractalité  doit  être  comprise  comme  un  potentiel.  Tout  objet  géo-
graphique est  potentiellement  fractal.  Dans  le  cas d’un  réseau  hydrographique,  toute  l’arborescence de  ce
réseau  est  fractale,  mais  chaque  branche  ou  chemin,  ne  l’est  pas  individuellement.  L’explication  de  cette
non fractalité est double. D’abord, cela vient peut-être simplement de la structure au niveau des branches et
des chemins qui ne porte pas assez de gamme d’échelles pour faire apparaître une relation fractale. Toute-
fois,  cela  peut  simplement  signifier  qu’un  cours  d’eau  pris  indépendamment  du  réseau  hydrographique
auquel  il  appartient,  est  un  objet  géographique  qui  se  déploie  dans  une  gamme  d’échelles  non  fractales
(Figure 37 et  Figure  38).  Tout  cela permet  d’insister  sur  le  fait  qu'une fractale articule plusieurs niveaux,
mais  ceux-ci  n’apparaissent  pas  forcément  dans  la  structure  extérieurement  ;  il  faut  nécessairement  un
zoom pour les définir.
† Relevé de dimension fractale locale

Tout comme il a été possible d’effectuer un relevé LC/VO par rapport à la distance au Pont de Ners,
il est possible de réaliser un relevé de la dimension fractale locale par rapport à la distance du Pont de Ners
(annexe 20-2). Si on prend, par exemple, le drain le plus long soit le 6401-RESEAU 1 et le 9402-RESEAU
2, on se rend compte que les relevés du rapport LC/VO et de la dimension fractale varient exactement de la
même façon :  les distributions sont identiques. Les dimensions fractales étant très proches des dimensions
topologiques de chacune des branches, cette correspondance entre les deux relevés permettent d’utiliser le
relevé du rapport LC/VO à la place de celui de la dimension fractale locale et vice versa.
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Figure 57. Rapport LC/VO du chemin de la branche 6401-RESEAU 1 à l'exutoire

Figure 58. Relevé de la dimension fractale par branche du chemin de la branche 6401-RESEAU 1 à l'exutoire 

Figure 59. Rapport LC/VO du chemin de la branche 9402-RESEAU 2 à l'exutoire

Figure 60. Relevé de la dimension fractale par branche du chemin de la branche 9402-RESEAU 2 à l'exutoire

Cette correspondance entre les pics observés sur le relevé LC/VO et ceux du relevé de la dimension
branche se démontre facilement.
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Soient  le  rapport  d’échelle  g  =  
p

q
 et  la  dimension  fractale  D  =  

ln p

ln q
,  si  q  est  constant  alors

g = qD- 1. On peut alors étudier les variations de g, notées dg et celles de D, notées dD.

∂ dg = g - g0

dD= D- D0

L’équation g = qD- 1 devient :

ln g = lnKg0 K1+ dgdD OO = (D0 + dD - 1) lnq

ï ln g0 + lnK1+
dg

g0
O = (D0 + dD - 1) lnq

ï 
ln g0

ln q
 + 

ln 1+
dg
g0

ln q
 = D0 + dD - 1

ï 
ln J p0

q
N

ln q
 + 

ln 1+
dg
g0

ln q
 = D0 + dD - 1

ï 
ln p0 - ln q

ln q
 + 

ln 1 +
dg
g0

ln q
 = D0 + dD - 1

ï D0 - 1 + D + 
ln 1 +
dg
g0

ln q
 = D0 + dD - 1

ï lnJ1 +
dg

g0
N = dD ln q

or, lnK1 +
dg

g0
O  a pour développement limité du premier ordre : 

dg

g0
.

ï 
dg

g0
 = dD ln q

ï dg = Hg0 ln qLdD
Désormais, si  l’on prend deux rapports d’échelle ayant deux dimensions fractales différentes, on a

alors :

dg1 = Hg0 ln qL dD1

dg2 = Hg0 ln qL dD2
>ï 
d g1

d g2
 = 
d D1

d D2

Autrement  dit,  on  peut  effectivement  se  servir  du  relevé  LC/VO  pour  caractériser  celui  des  dimensions
fractales.

Ces  relevés  sont  fondamentaux.  D’après  Cecil  D.  Murray  (1927),  si  
LC

VO
 =  2 1ê3  º  1,260  alors  le

réseau dans le cas d'un embranchement à base 2 est optimal par rapport à la résistance au flux. La Figure 57
et  la  Figure  59  permettent  de  visualiser  localement  les  branches  où  le  rapport  dépasse  largement  1,260.
L’identification de ces branches est fondamentale pour une meilleure prévention des risques d’inondation.
Plus le rapport est élevé, plus le risque d’inondation est important en cas de forte pluie. De plus, si l’étab-
lissement des rapports est impossible ; il est possible d’obtenir une idée de ces variations grâce à la dimen-
sion fractale locale.
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† Fractalité du réseau, irrégularité et branches

La non fractalité des branches et des chemins est un point très important. En effet, cela montre qu’il
ne faut  pas voir des fractales partout. Elle démontre que l’irrégularité seule ne suffit  pas pour caractériser
une fractale, comme cela est si souvent écrit. Elle vérifie également qu’un arbre n’est fractal qu’à sa limite.

Ainsi, un réseau hydrographique est caractérisé par trois valeurs : un facteur d’échelle g, une dimen-
sion fractale D et un embranchement élémentaire k qui semble être constant quel que soit le réseau étudié.
De plus, l’étude du réseau hydrographique des Gardons via  deux arborescences complémentaires a permis
de montrer que la fractalité dans ce cas n’était définie qu’à la limite de celles-ci. Autrement dit, un arbre est
fractal, mais chacune de ses branches et chacun de ses chemins (bas en haut ; haut en bas) ne le sont pas.
Ceci prouve que l’irrégularité à elle seule ne suffit pas pour définir une fractale. C’est une condition néces-
saire mais pas suffisante. Ce qui caractérise une fractale est bien sa structure multi-échelle, c’est-à-dire des
structures (irrégulières) dans les structures (Figure 9). Dans ce cas, le nombre d’échelles n’est pas suffisant.
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7
L'analyse morphologique des images Landsat des 
principales villes du monde

Depuis les années 1970, une nouvelle étude morphologique est apparue :  celle des villes (Haggett,
1965). « L’objet de la morphologie urbaine est la forme urbaine, forme posant d’entrée de jeu, la question
de sa définition. Ce que nous ont montré les premiers travaux de morphologie. [C’est] que la forme urbaine
n’est  jamais  une  donnée  a  priori,  elle  est  toujours  construite,  un  objet  d’étude  construit  à  partir  d’une
[hypothétique]  définition,  d’une  représentation  [et]  d’un  point  de  vue  sur  [sa]  forme :  [sur]  la  forme  du
tissu  (développée  dans  les  trois  écoles  de  morphologie,  italienne,  française  et  anglaise),  [et  sur]  la  forme
urbaine  [elle-même]  comme forme  des  tracés  (développée  par  les  géographes  allemands  de  l’entre-deux-
guerres ;  Lavedan,  1936) » (Lévy,  2005).  Ainsi,  pour  définir  morphologiquement  une  ville,  il  existe  trois
possibilités : (1) soit la ville est définie comme une tache correspondant généralement à une agglomération
morphologique au sens de François Moriconi-Ébrard (1994) ; (2) soit la ville est caractérisée par son réseau
intra-urbain ; (3) soit la ville est définie par ses bâtiments (Brunhes, 1900 ; Robic ; 2003). Chacune de ces
définitions fera l’objet d’un chapitre.

Si  l’on  définit  la  ville  par  sa  tache,  on  s’intéresse  exclusivement  à  son  contour,  à  sa  limite,  mais
comment définir ce qui fait parti de la ville et ce qui n’en fait pas parti ? Généralement, on choisit un seuil
statistique basé sur une densité de population, ce qui suppose que l’on ait des connaissances sur la réparti-
tion  de  cette  population.  Cependant,  si  l’on  ne  possède  aucune  de  ces  informations,  il  faut  utiliser  un
référent morphologique qui dépend de l’outil que l’on utilise. Par exemple, la télédétection ou la photogra-
phie aérienne permettent d’identifier les structures bâties, puisqu’elles ont une réflectance particulière. Par
contre, si l’on caractérise la ville par son réseau intra-urbain, l’outil  privilégié est  sans doute le plan de la
ville.  Pour  le  faire  apparaître  clairement,  cela  nécessite  une  haute  résolution,  mais  on  néglige  tout  autre
aspect de la ville : bâti dense, place, espaces verts etc. Enfin, la ville peut être identifiée grâce à la densité
élevée  de  son  bâti.  Autrement  dit,  ici,  la  ville  n’inclut  pas  les  réseaux,  les  jardins  publics  ou  privés,  les
terrasses, les places, les points d’eau, etc. Nombreux sont donc les outils permettant d’identifier le bâti : la
télédétection, les photographies aériennes, les plans du cadastre, etc.

Ce  chapitre  va  effectuer  une  analyse  fractale  de  différentes  taches  urbaines  extraites  à  partir  des
données des satellites  Landsat.  Il  ne s’agit  pas de réaliser  une réflexion sur  la  télédétection,  mais simple-
ment d’extraire différentes taches urbaines de plusieurs villes du monde, et de les comparer grâce à l’aide
d’une analyse fractale.
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7.1. Extraction des données

Le  site  http://sedac.ciesin.columbia.edu/ulandsat/data.jsp/  fournit  des  données  gratuites,  localisées
et datées des principales villes du monde. Ses images ont été analysées et prétraitées par Christopher Small
(2006). Un autre site, celui d’Ann Bryant (2007), http://geology.com/world-cities/, a mis à disposition des
images datant toutes de 1999. Ces deux sites ont pour source les images des satellites du programme états-
uniens Landsat, et plus particulièrement de Landsat 7.

7.1.1. Les satellites Landsat

Le programme Landsat de la NASA débuta le 22 juillet 1972 avec la mise en orbite de Landsat 1.
Six satellites furent lancés entre 1972 et 1999, et seuls Landsat 5 (1984) et Landsat 7 (1999) fonctionnent
toujours aujourd’hui. Ces deux satellites suivent  une orbite héliosynchrone à une altitude de 705 km, leur
cycle orbital étant de 16 jours (Girard et Girard, 1999).

Landsat  5 possède un capteur TM (Thematic Mapper) à sept bandes spectrales (Robin, 2002). Les
canaux 1, 2 et 3 captent la lumière visible, les canaux 4, 5 et 7, le proche et moyen infrarouge, et le canal 6,
le rayonnement thermique.  Chaque canal possède une résolution spectrale :  30 × 30 m² pour les canaux 1,
2, 3, 4, 5, 7 et 80 × 80 m² pour le canal 6. Toutefois, il est important de noter que chaque scène capturée (ou
image) possède une résolution spatiale  (taille  du pixel)  de 30 × 30 m².  Landsat  7  possède,  quant  à lui,  un
capteur ETM+ (Enhanced Thematic Mapper Plus).  La seule différence entre TM et ETM+ est l’existence
d’un  canal  supplémentaire  (le  canal  8)  dit  panchromatique  dont  la  résolution  spectrale  est  15 × 15 m²
(Robin, 2002).

Les deux bases de données citées précédemment ont principalement pour source le satellite Landsat

7.  La  base  de  données  de  Christopher  Small  (2006)  est  constituée  d’images  filtrées.  En  effet,  seuls  les
canaux 2, 4 et 7 ont été utilisés pour déterminer les structures urbaines. Chaque image possède un pixel de
30 × 30 m²,  et  une  étendue de  30 × 30 km².  Pour  plus  de  détail,  le  lecteur  pourra  lire  l’article de  Christo-
pher  Small  (2005)  dans  lequel  il  détaille  tous  ses  prétraitements.  La  base  d’Ann  Bryant  (2007)  est  plus
problématique. En effet, il n’y a aucune description des données. Il semble qu’il s’agisse d’images Landsat

7  brutes  c’est-à-dire  qu’elles  possèdent  l’intégralité  de  leurs  canaux.  Le  pixel  semble  correspondre  à
30 × 30 m², mais l’étendue n’est pas normalisée comme dans la base de Christopher Small.

Ces deux bases sont utilisables, sous certaines conditions, dans l’optique d’une analyse fractale des
taches urbaines que l’on peut extraire de ces images.

7.1.2. Les couleurs de l'urbain

Sur  le  site  de  SEDAC  (SocioEconomic  Data  and  Applications  Center),  organisme  dont  dépend
Christopher  Small,  il  est  précisé  que,  sur  chaque  image  traitée,  l’aire  urbaine  peut  être  identifiée  par  les
couleurs  suivantes :  le  violet,  le  gris  et  le  blanc.  La  végétation  apparaît  en  vert,  et  l’eau  en  noir  ou  bleu
foncé. Si l’on prend l’exemple de Beijing (Figure 62.a), à l’œil nu, on perçoit très bien la tache urbaine. Il
serait très simple de l’extraire manuellement par l’intermédiaire d’un système d’information géographique.
Toutefois, s’il faut réaliser cette tâche sur les soixante-dix huit images de la base de données de Christopher
Small  (2006)  et  sur  les  soixante-trois  images  d’Ann Bryant  (2007),  cela  devient  très  contraignant.  Aussi,
pour  traiter  plus  rapidement  ces  données,  on  peut  utiliser  une  méthode  de  filtrage  proposée  par  Hiba
Alawad (Alawad et Grasland, 2009).

7.1.3. L'extraction  de la tache urbaine

Initialement,  cette  méthode  d’extraction  semi-automatique  avait  été  testée  à  des  résolutions  plus
fines pour identifier les structures bâties dans les villes (Alawad et Grasland, 2009). Elle peut être étendue
très facilement à l’extraction, grossière, d’une tache urbaine.
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Il  faut  rappeler  qu’une  image  est  une  matrice  à  deux  dimensions,  où  chaque  cellule  (ou  pixel)
représente une couleur. Il existe plusieurs sortes de codage possible : le RGB, le CMYK, le niveau de gris,
etc.  Ici,  chaque image a  été  codée en  RGB (Red,  Green,  Blue).  Ce qui  signifie que chaque pixel  possède
trois bandes : une rouge, une verte et une bleue. Chaque bande possède une valeur allant de 0 à 255 : plus
16 millions de couleurs sont donc possibles.

Pour extraire le bâti, Hiba Alawad et Loïc Grasland utilisent la bande rouge ; ils se fixent un seuil, à
partir  des  données,  qui  leur  permet  d’identifier  l’intervalle  dans  lequel  se  trouvent  les  éléments  bâtis
(Alawad et Grasland, 2009). Cette méthode, très efficace, présente l’avantage de conserver l’hétérogénéité
spatiale de l’image source, mais l’inconvénient de ne travailler que sur une seule bande. En ce qui concerne
l’extraction des taches urbaines, la conservation de l’hétérogénéité des couleurs de l’image source apporte
peu  d’informations.  Aussi,  on  peut  mettre  au  point  un  filtre,  très  simple,  qui  limite  cette  hétérogénéité
(Tonye et alii, 2000).

Le  filtre  est  le  suivant :  dans  chaque  bande,  toutes  les  valeurs  comprises  entre  0  et  99  vont  être
codées  0 ;  toutes  celles  entre  100  et  199,  100 ;  toutes  celles  entre  200  et  255,  200.  Ainsi,  on  obtient  une
image possédant 27 couleurs potentielles (Figure 61), au lieu de 16 millions, ce qui permet une identifica-
tion, grossière, mais efficace de la tache urbaine (Figure 62.b).

Figure 61. Couleurs potentielles obtenues par le filtre

Figure 62. Extraction de la tache urbaine de Beijing
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Le  filtrage  des  couleurs  ayant  été  effectué,  il  suffit  d’identifier  les  couleurs  de  la  tache  urbaine.
Dans le cas de Beijing, seule la couleur (0, 0, 100) permet d’identifier la tache urbaine. Toutefois, dans la
majorité des images de Christopher Small (2006) et d’Ann Bryant (2007), il y a entre deux et cinq couleurs
qui caractérisent la tache urbaine dans chacune des images. Celles-ci sont limitées à un choix parmi les dix
couleurs suivantes : magenta foncé (200, 0, 200), violet (100, 0, 100), bleu gris (100, 100, 200), bleu foncé
(0, 0, 100), gris (100, 100, 100), rose foncé (200, 100, 100), rouge (200, 0, 0), rouge foncé (100, 0, 0), vert
gris (0, 100, 100), rose (200, 100, 100). Ce choix est contingent à chaque entité urbaine et dépend de ce que
perçoit le modélisateur.

À  partir  de  là,  il  est  facile  de  convertir  les  couleurs  choisies  en  blanc  et  les  autres  en  noir  ce  qui
donne le  résultat  final  (Figure  63).  Cette  méthode a  été appliquée  aux soixante-huit  images  de la  base de
Christopher  Small  (2006)  et  aux  soixante-trois  images  de  celle  d’Ann  Bryant  (2007).  Cependant,  elle  ne
fonctionne  pas  à  chaque  fois,  seules  101  sur  les  131  ont  fourni  une  extraction  convaincante.  De  plus,
l’image obtenue comporte beaucoup de bruits, surtout aux grandes échelles.

Figure 63. Image monochrome de la tache urbaine de Beijing

7.1.4. Les limites de l'extraction

Plusieurs  paramètres  peuvent  perturbés  l’extraction  des  taches  urbaines :  le  manque  de  cohérence
des  couleurs  de  l’image  originale,  les  ombres,  les  nuages,  la  trop  forte  prégnance  d’entités  physiques
(montagnes, lacs), etc. Ces éléments seraient gênants dans la construction d’une base de données représen-
tant  l’image  précise  d’une  agglomération  à  une  échelle  donnée.  Cependant,  l’objectif  de  ces  extractions
étant de réaliser  une analyse fractale de chaque structure urbaine, ces « éléments perturbants » deviennent
de  simples  bruits  si  leur  nombre  et  leur  étendue  restent  limités  en  termes  de  taille.  Finalement,  seuls  les
bruits dus à la répartition des couleurs elles-mêmes peut être source d’erreur dans la mesure de la dimen-
sion  fractale  de  la  tache  de  l’agglomération,  ce  qui  est  le  principal  critère  de  rejet  des  trente  images  non
prises en compte. De plus, les pixels isolés ne représentent pas forcément des entités bâties. Leur surnombre
est visible à grande échelle dans l’analyse fractale par comptage de boîtes carrées. Puis, progressivement en
allant  vers  les  petites  échelles,  ce  bruit  est  éliminé par  la  méthode même de  l’estimation  de la  dimension
fractale.  Cette  observation  se  matérialise  par  une  structure  multifractale  dont  la  gamme  d’échelles  aux
hautes  résolutions  s’interprète  comme un  bruit.  De  plus,  l’analyse  par  comptage de  boîtes  carrées  joue  le
rôle d’un buffer (Le Corre et alii, 2000), puisque, au-delà de l’échelle de coupure entre les deux domaines
fractals, en allant vers les petites échelles, on mesure la dimension fractale de la tache urbaine, et non plus
celle du bruit des grandes échelles.

Seules  soixante-deux  images  de  Christopher  Small  (2006)  et  trente-neuf  images  d’Ann  Bryant
(2007) ont pu être utilisées et utilisables pour l’analyse fractale.
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7.2. Analyse fractale des données

Une dimension fractale par  comptage de boîtes carrées a été réalisée pour les  101 entités urbaines
retenues.  Chacune  d’elle  présente  des  cas  de  dimensions  fractales  constantes  dans  la  gamme  d’échelles
d’analyse (de 30 m (ou 15 m) à l’étendue de l’image).

7.2.1. Les résultats

La  Figure  64  présente  les  différentes  taches  urbaines  et  leurs  caractéristiques.  La  première  ligne
donne le nom de l’agglomération ; la seconde, l’État ; la troisième, la résolution ; la quatrième l’échelle de
coupure ; la cinquième, l’étendue ; la sixième, la dimension fractale observée aux grandes échelles appelée
D1 ; la septième, l’estimation de la dimension fractale aux petites échelles appelée D2 ; la huitième, la date
de  la  capture  (toutes  les  dates  étant  antérieures  à  1999  correspondent  à  une  capture  Landsat  5),  la  neu-
vième, les éléments perturbateurs, c’est-à-dire les entités physiques ou anthropiques ne correspondant pas à
la  structure  urbaine  qui  sont,  malgré  tout,  pris  en  compte  dans  le  calcul  de  la  dimension  fractale,  et  la
dixième, la base de données d’où provient l’image servant au calcul. D1 et D2 ne sont pas de même nature.
D1  correspond à la structure fractale d’un « bruit » présent aux grandes échelles. En effet, lors de l’extrac-
tion, la tache n’est pas fermée ; elle le devient à partir de l’échelle de coupure propre à chacune des images
dont la moyenne est 425 ± 47 m. Une fois que la résolution est supérieure à cette échelle de coupure, une
seconde dimension fractale D2 apparaît. Cette dernière correspond à la mesure de la dimension de la tache
urbaine proprement dite. Cette interprétation est étayée également par le fait  que certaines villes ayant été
extraites sans bruit telle que Accra, Bogota, Budapest, Buenos Aires 1, Calcutta 1, etc., n’ont pas de transi-
tion  fractal - fractal.  Ainsi,  seules  les  valeurs  de  D2  doivent  être  étudiées,  D1  ne  renvoyant  qu’au  bruit  de
l’extraction.

Il  est  important  de  noter  que certaines  agglomérations  sont  présentes  dans  les  deux  bases  de  don-
nées. Tel est le cas de Buenos Aires, de Calcutta, de Lagos, de Montreal, de Mumbai, de Paris, de Perth, de
Rio  de  Janeiro,  de  Santiago,  de  Sao  Paolo,  de  Sydney  et  de  Tokyo.  Toutefois,  la  valeur  de  ces  doubles
dimensions fractales est parfaitement comparable dans la mesure où, si l’étendue est différente, la taille du
pixel est  comparable, car soit il  est identique (30 × 30 m²), soit il  n’y a qu’un facteur quatre entre la taille
des pixels des agglomérations ayant des pixels plus fins (15 ×15 m²). Il est donc possible de regrouper ces
données.
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Figure 64-1. Taches urbaines de quelques agglomérations de par le monde
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Figure 64-2. Taches urbaines de quelques agglomérations de par le monde
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Figure 64-3. Taches urbaines de quelques agglomérations de par le monde
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Figure 64-4. Taches urbaines de quelques agglomérations de par le monde
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Figure 64-5. Taches urbaines de quelques agglomérations de par le monde
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Figure 64-6. Taches urbaines de quelques agglomérations de par le monde
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Figure 64-7. Taches urbaines de quelques agglomérations de par le monde
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Figure 64-8. Taches urbaines de quelques agglomérations de par le monde
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Figure 64-9. Taches urbaines de quelques agglomérations de par le monde
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Figure 64-10. Taches urbaines de quelques agglomérations de par le monde
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Figure 64-11. Taches urbaines de quelques agglomérations de par le monde
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Figure 64-12. Taches urbaines de quelques agglomérations de par le monde
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Figure 64-13. Taches urbaines de quelques agglomérations de par le monde

Si l’on considère que ces douze images en double sont indépendantes, la combinaison des estima-

tions (valeurs et erreurs) se calcule de la manière suivante : soient wi  = 1

si
2  et w = S

i

wi  alors la moyenne

vaut m
`
 = 

1
w
S

i

wiDi,  où Di est la dimension fractale, et l’erreur vaut s
`

 = 
1

w
. Si on applique cette méthode

statistique,  on  peut  proposer  une  estimation  globale  de  la  dimension  fractale  des  douze  villes  en  double
(Figure 65).
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Agglomération
Dimension fractale

corrigée
Erreur corrigée

Buenos Aires 1,766 0,004

Calcutta 1,759 0,006

Lagos 1,564 0,003

Montreal 1,769 0,007

Mumbai 1,757 0,004

Paris 1,820 0,007

Perth 1,755 0,006

Rio de Janeiro 1,767 0,004
Santiago 1,764 0,007

São Paulo 1,655 0,003
Sydney 1,628 0,005

Tokyo 1,798 0,004

Figure 65. Tableau présentant les corrections des dimensions fractales des douze agglomérations en double

Ces  corrections  étant  effectuées,  il  est  possible  de  dresser  une statistique  de  la  dimension  fractale
observée  pour  chacune  de  ces  agglomérations  (Figure  66).  On  suppose  que  la  loi  des  grands  nombres
atténue le bruit contenu dans chacune des images analysées, et qu’il s’agit d’une distribution gaussienne en
première approximation. La statistique est centrée autour de la valeur 1,7 ± 0,1.

n = 89

Arrondi : 0,001

Moyenne : 1,723

Écart-type : 0,084

Erreur : 0,009

Arrondi : 0,01

Moyenne : 1,72

Écart-type : 0,08

Erreur : 0,01

Arrondi : 0,1

Moyenne : 1,7

Écart-type : 0,1

Erreur : 0,1

Figure 66. Distribution de probabilité de la dimension fractale centrée et réduite des différentes villes

7.2.2. La critique des données extraites

Pour  être certain  que cette moyenne n’est  pas  biaisée par  les  tailles  des différentes  images,  il  faut
isoler les deux sources de données et dresser leur statistique respective.

Les données de Christopher Small présentent une distribution statistique (Figure 67) analogue à la
Figure 66. Il en est de même avec les données d’Ann Bryant (Figure 68). De plus, la part des deux sources
différentes (1,737 et 1,705) dans la valeur moyenne (1,723) est de l’ordre de 50% (1,737 – 1,723 = 0,014 et
1,723 – 1,705 = 0,018). Autrement dit, les deux sources de données sont comparables, l’une ne domine pas
l’autre.
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n = 62

Arrondi : 0,001

Moyenne : 1,737

Écart-type : 0,077

Erreur : 0,010

Arrondi : 0,01

Moyenne : 1,74

Écart-type : 0,08

Erreur : 0,01

Arrondi : 0,1

Moyenne : 1,7

Écart-type : 0,1

Erreur : 0,1

Figure 67. Distribution de probabilité de la dimension fractale centrée et réduite de la base de Christopher Small

n = 39

Arrondi : 0,001

Moyenne : 1,705

Écart-type : 0,105

Erreur : 0,017

Arrondi : 0,01

Moyenne : 1,71

Écart-type : 0,11

Erreur : 0,02

Arrondi : 0,1

Moyenne : 1,7

Écart-type : 0,1

Erreur : 0,1

Figure 68. Distribution de probabilité de la dimension fractale centrée et réduite de la base d'Ann Bryant

7.3. Interprétations

Comment  expliquer  cette  dimension  fractale  constante ?  Plusieurs  hypothèses  peuvent  être  for-
mulées.  Tout  d’abord,  la  dimension fractale  est  peut-être liée  à la  localisation des  taches sur  l’espace ter-
restre.  Ensuite,  elle  pourrait  être  reliée  à la  population  contenue dans  cette  tache.  Enfin,  elle  pourrait  être
reliée à la surface relative des taches.

7.3.1. Dimension  fractale et localisation des taches

La localisation des taches mesurées (Figure 69) permet de constater qu’il n’existe aucun lien entre
la répartition et les aires culturelles, même si l’on constate sur la carte quelques nids au niveau des grands
foyers  de  peuplement  (Europe,  Inde,  Chine  et  partie  est  des  États-Unis)  autour  desquels  les  dimensions
fractales  sont  plus  faibles  que  ceux-ci.  Autrement  dit,  la  dimension  fractale  de  chacune de  ces  taches  est
indépendante de sa localisation. En effet,  que la ville suive un plan hippodamien ou un plan circulaire ou
qu’elles  apparaissent  sous  forme  d’une  tache  « étoilée »,  la  dimension  fractale  reste  très  proche  de  1,7.
Qu’en est-il du rapport entre la dimension fractale et de la population contenue dans cette tache ?
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Figure 69. Localisation des dimensions fractales de chacune des taches urbaines mesurées

7.3.2. Dimension fractale et population urbaine

Pierre Frankhauser (1994) a montré qu’il existait des liens entre la dimension fractale et la popula-
tion urbaine. Les données de la population sont issues de la base Tageo qui sera expliquée en détail dans le
chapitre 16. La valeur que fournit cette base ne concerne que la ville principale, et non la totalité de la tache
formant l’agglomération morphologique. Toutefois, la Figure 70 et la Figure 71 semblent indiquer l’inverse
des résultats de Pierre Frankhauser : il n’existe aucun lien entre la dimension fractale et la population de la
ville principale de la tache. Qu’en est-il de la dimension fractale et de la surface relative ?
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Tache D2 Population

Accra 1.743 1 719 100

Alger 1.711 1 661 000

Athènes 1 1.81 762 100

Atlanta 1.671 423 900

Bangalore 1.709 4 547 300

Bangkok 1.818 5 455 200

Beijing 1 1.739 7 209 900

Berlin 1.752 3 396 300

Beyrouth 1.598 1 185 300

Bogota 1.689 6 981 500

Brisbane 1.83 1 598 600

Brussels 1.822 1 005 800

Budapest 1.833 1 727 300

Buenos Aires 1 1.766 11 928 400

Calcutta 1 1.759 4 852 800

Calgary 1.754 938 300

Caracas 1.714 1 967 800

Changchun 1.743 2 337 000

Chennai 1.641 4 466 900

Chicago 1.553 2 862 400

Cozumel 1.33 69 400

Dakar 1.572 2 613 700

Damas 1.719 1 614 500

Delhi 1.741 10 400 900

Dhaka 1.721 5 818 600

Dublin 1.713 1 027 900

Genève 1.756 181 200

Glasgow 1.696 1 081 800

Guadalajara 1 1.824 1 672 000

Guangzhou 1.771 3 244 900

Guatemala 1.773 999 400

Tache D2 Population

Hangzhou 1.77 1 881 500

Hanoï 1.78 1 420 400

Hong Kong 1.565 7 018 600

Hyderabad 1.75 3 654 900

Istanbul 1.755 9 592 200

Jaipur 1.693 2 462 500

Johannesbourg 1.66 1 975 500

Katmandou 1.829 743 300

Kuala Lumpur 1.716 1 410 300

Lagos 1 1.564 8 682 200

Le Cap 1.744 2 984 100

Lisbonne 1.718 560 700

Londres 1.803 7 593 300

Madrid 2 1.786 3 167 000

Managua 1.562 1 113 100

Manaus 1.672 1 615 700

Melbourne 1.765 3 666 000

Mexico 1 1.836 8 705 100

Miami 1.709 380 500

Monterrey 1.828 1 142 900

Montreal 1 1.769 3 256 300

Moscou 1.764 11 102 300

Mumbai 1 1.757 12 622 500

Munich 1.76 1 241 100

Nairobi 1.758 2 504 400

New York 1.781 8 091 700

Nouvelle-Orléans 1.802 466 600

Osaka 1.547 2 596 700

Paris 1 1.82 2 107 700

Perth 1 1.755 1 412 900

Phoenix 1.776 1 409 900

Tache D2 Population

Port-au-Prince 1.736 1 156 400

Puebla 1.797 1 370 800

Pyongyang 1.773 2 811 500

Quito 1.61 1 466 300

Rio de Janeiro 1 1.767 6 150 200

Saint-Pétersbourg 1.718 4 079 400

Salt-Lake-City 1.723 179 900

Salvador 1.684 513 400

San Francisco 1.792 746 900

San Jose 1.642 340 100

Santa Cruz 1.724 1 196 100

Santiago 1 1.764 4 434 900

Sao Paolo 1 1.655 10 260 100

Seattle-Tacoma 1.781 767 200

Seoul 1.6 10 165 400

Shanghai 1 1.7 13 278 500

Shenyang 1.759 3 527 800

Stockholm 1.781 1 250 400

Sydney 1 1.628 4 277 200

Teheran 1.606 7 317 200

Tokyo 1 1.798 8 294 200

Toronto 1 1.713 4 551 800

Vancouver 1 1.641 1 836 500

Venise 1 1.637 271 800

Vienne 2 1.755 1 504 100

Washington DC 1.761 556 500

Zurich 1.781 347 900

Figure 70. Taches urbaines, dimensions fractales mesurées et population de la ville principale

Figure 71. Population de la ville principale et dimension fractale de la tache

7.3.3. Dimension fractale et surface relative

On appelle surface relative SR le rapport entre la surface que représentent les « pixels villes » SN en
mètre carré sur la surface totale de l’image ST en mètre carré.
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SR = 
SN

ST
 ä 100

SN  et  ST  sont  calculées  à  partir  de  la  résolution  de  chaque  image  (¶min)  et  du  nombre  de  « pixels  villes »
extrait NV (ou le nombre total de pixels NT).

SN  = NV  ä ¶min
2

ST  = NT  ä ¶min
2

La Figure  72  montre  qu’il  n’existe  aucun  lien  entre  la  surface  relative  et  la  dimension  fractale de
chacune des taches.

Figure 72. Surface relative et dimension fractale de chacune des taches

L’analyse  fractale  de  l’organisation  spatiale  de  différentes  agglomérations  mondiales  aboutit  à  un
résultat  étonnant :  pour  une  même résolution  initiale  (30 m),  on  observe  une dimension  fractale  moyenne
proche  de  1,7,  quelle  que  soit  la  forme  géométrique  apparente  de  la  ville.  Ce  résultat  est  en  accord  avec
l’hypothèse  de  Pierre  Frankhauser  d’après  des  calculs  réalisés  sur  Berlin  et  Montbéliard  (Frankhauser,
1994),  sur  Besançon  (Frankhauser,  1998)  et  sur  Bruxelles  (Keersmacker  et  alii,  2004)  qui  proposait  un
modèle théorique de type « tapis de Warclaw Sierpinski » dont la dimension fractale était proche de 1,7.

De  plus,  cette  dimension  fractale  constante  prouve  que  c’est  par  l’étude  de  l’organisation  multi-
échelle  que  l’on  a  pu  découvrir  un  invariant  intrinsèque  à  l’organisation  des  agglomérations  mor-
phologiques que représentent les taches. La dimension fractale permet aussi de classer les différentes villes
du  monde  en  fonction  de  leur  niveau  d’organisation  scalaire,  mais  sans  que  cela  soit  facilement  inter-
prétable. Pour preuve, il  faut ajouter qu’il  n’a pas été possible de relier cet  indicateur à d’autres variables
« plus  classiques »  en  géographie,  telles  que  la  population  de  la  ville  principale,  la  surface  de  la  tache
urbaine  ou  la  répartition  même de  ces  taches  à  l’échelle  du  monde à  nuancer  en  fonction  des  pistes  évo-
quées  ci-dessus  et  à  vérifier.  Quel  est  donc  le  processus  engendrant  ces  morphologies  si  différentes  d’un
point de vue spatiale ? Ces processus sont-ils eux-mêmes fractales ? Enfin, l’extraction ayant été approxima-
tive, il faut vérifier ce résultat sur deux cas : l’un sur un plan de ville (Avignon), l’autre sur une répartition
des  bâtiments  d’une  ville  (Montbéliard).  Cela  permettra  également  de  répondre  aux  deux  questions
précédentes.
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8
L'analyse morphologique d'images à résolution 
variable de la ville d'Avignon

L’analyse  morphologique du  réseau  hydrographique des  Gardons  a  permis  de  proposer  une méth-
ode  d’analyse  spatiale  de  structures  linéaires  et  arborescentes.  Toutefois,  les  mêmes  méthodes  peuvent
servir,  par  exemple,  à  l’étude  de  la  morphologie  urbaine.  Il  est  vrai  que  les  villes  sont  des  objets  géo-
graphiques dont la fractalité n’est plus à prouver (Batty et Longley, 1994 ; Frankhauser, 1994 ; Frankhauser
et Pumain, 2001). Une étude menée sur l’agglomération d’Avignon a permis d’éprouver cette méthode sur
un élément surfacique.

8.1. Présentation des données

Les  données  de  la  commune  d’Avignon  et  du  Pontet  sont  issues  d’une  capture  image-écran  des
cartes disponibles sur le site Mappy en mars 2008. La capture a permis d’obtenir six images de résolutions
différentes (Figure 73 et Figure 74). Certaines d’entre elles (images 1 et 2 de la Figure 74) ont évidemment
due être capturées par  morceaux,  ce qui  a nécessité  de les  recoller  et  a  engendré quelques pertes néglige-
ables de pixels. Il s’agit ici d’étudier la limite de la ville en tant que surface à différentes résolutions. Aussi,
de  toutes  les  informations  contenues  sur  la  carte  originale,  on  peut  ne  conserver  que  les  contours  et  la
surface de la ville, en noir, et  le reste en blanc pour toutes les images (Figure 74). Il est à noter que pour,
l’image 1, le  réseau intra-urbain  apparaît  clairement,  aussi il  a  été décidé de l’inclure dans cette image en
blanc.  Ce  choix  peut  être  justifié  par  la  notion  d’émergence  d’échelle :  à  cette  échelle,  on  voit  ce  détail
supplémentaire.  En  effet,  à  une  résolution  3 m,  il  est  difficile  de  cerner  le  réseau  complet  intra-urbain.
D’ailleurs, les  images aériennes, également  disponibles sur  Mappy,  le montrent  bien. Pour ce fait,  il  a été
choisi  de  ne  pas  représenter  les  quelques  tronçons  visibles.  Toutefois,  le  passage  entre  l’image 3  et  l’im-
age 4 se caractérise par une perte d’information due au changement d’échelle : au nord d’Avignon la zone
commerciale du Pontet disparaît à la résolution 25 m.

Numéro de

l'image
Échelle géographique

Taille du pixel en mètre

Hpour une précision de 10-1 mètresL
1 101 pixels pour 100 mètres 1 pixel pour 1,0 mètres

2 101 pixels pour 300 mètres 1 pixel pour 3,0 mètres

3 101 pixels pour 800 mètres 1 pixel pour 7,9 mètres

4 121 pixels pour 3 000 mètres 1 pixel pour 24,8 mètres

5 101 pixels pour 10 000 mètres 1 pixel pour 99,0 mètres

6 116 pixels pour 40 000 mètres 1 pixel pour 344,8 mètres

Figure 73. Tableau de la résolution des images capturées d'Avignon
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Figure 74. Images capturées de Mappy traitées pour étudier la morphologie d'Avignon

L’étendue  considérée  concerne,  à  toutes  les  résolutions  envisagées,  l’agglomération  d’Avignon  et
du Pontet.

8.2. Étude fractale des données

La  « succession  d’analyses  des  niveaux  d’agrégation  et  des  passages  entre  ces  niveaux  aboutit  à
l’analyse du système d’échelles » (Piron, 1993). Cette citation résume bien l’état d’esprit dans lequel il faut
aborder les données morphométriques de la ville d’Avignon.
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8.2.1. L'état de la question

Peu  d’analyses  fractales  de  la  morphologie  urbaine  ont  considéré  une  approche  réellement  multi-
résolution.  Pourtant,  la  piste  fut  lancée  par  Pierre  Frankhauser  (1994,  p. 130)  où,  à  travers  l’exemple  de
l’agglomération de Berlin, il mesura la dimension fractale à deux résolutions différentes, mais très proches.
Il  contesta  que  les  dimensions  fractales  obtenues  quelle  que  soit  la  méthode  utilisée  étaient  sensiblement
différentes.  De  plus,  il  note  que  « sur  une  carte  d’échelle  régionale,  une  ville  se  présente  plus  ou  moins
comme une tache  d’encre.  Partant  du  centre  on  trouve  des  espaces  libres  surtout  dans  la  périphérie  où  la
structure déchiquetée donne lieu à des zones libres de plus en plus grandes, si bien que la surface bâtie se
dissout  en  miettes de  plus petits  habitats.  En  descendant  à une échelle plus  détaillée,  les  grands corridors
des  voies  de  transport  comme  les  artères  routières  et  ferroviaires  apparaissent.  […]  Enfin  au  niveau  des
quartiers, on découvre encore plus d’espaces libres en forme de squares et de rues qui suivent, eux aussi, à
cette échelle un ordre hiérarchique, par exemple pour la largeur des rues, la grandeur des places, etc. Finale-
ment,  on pourrait  dire que même à l’intérieur des îlots,  on découvre des espaces libres encore plus petits,
tels  que  des  cours »  (Frankhauser,  1994,  p. 99-100).  Quant  au  deuxième  manuel  de  référence  (Batty  et
Longley,  1994),  il  n’évoque même pas la  question. La plupart  des fractalistes  en géographie urbaine con-
tinue  d’ailleurs  à  n’étudier  leur  objet  qu’à  une  seule  résolution  de  référence  (Tannier  et  Pumain,  2005),
généralement la plus fine possible.

Avec  des  données  de  Mappy,  on  ne  peut  pas  descendre  jusqu’au  niveau  du  bâti.  On  doit  se  con-
tenter des îlots urbains, du moins pour l’image 1 où ils sont apparents. Les images 2 à 6 considérant la ville
comme  un  bloc  ne  sont  pas  concernés  par  cette  remarque.  En  effet,  les  îlots  n’apparaissent  pas  à  ces
échelles,  si  on  se  reporte  à la  vue aérienne de la  carte.  Toutefois,  Safouk Al Khalifeh  (2008)  a mené une
analyse fractale à une résolution sur le bâti et la végétation d’Avignon et du Pontet. L’analyse présentée ici
n’est qu’un complément explicatif aux résultats qu’il avait obtenus.

8.2.2. L'analyse multi-résolution de la ville d'Avignon

Un calcul de dimension fractale de boîte carrée va être mené sur chacune des images considérées.
Le  choix  de  cette  méthode  s’est  imposé  de  lui-même.  Pour  des  raisons  techniques,  il  est  plus  facile  de
programmer sur des images raster ce type de dimension sur Mathematica©Wolfram. Le programme utilisé
est une adaptation d’un programme de Laurent Nottale (2008) qui avait servi pour analyser d’autres images
comme celles des courbes de niveau des Gardons.
8.2.2.1. Traitement de l'image 1

L’image 1 présente toutes les caractéristiques du problème issu de la relation entre la grande éten-
due et la grande résolution. En effet, l’image est trop grande pour être traitée par le logiciel Mathematica.
Aussi, il faut la découper. Une partition de 3 000 × 3 000 pixels a été réalisé. Ensuite, on calcule la dimen-
sion fractale de boîtes carrées de chaque découpage. Puis, on recompile les données obtenues pour chaque
image en les additionnant (Figure 75). La dimension fractale de l’agglomération Avignon - Le Pontet vaut
1,79  à  une  résolution  d’un  mètre.  Cette  procédure  implique  une  perte  d’information  aux  petites  échelles,
mais  sur  une  image  possédant  117 521 140 pixels,  cette  solution  était  optimale  par  rapport  à  la  réflexion
menée.
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ln N = -1,792(± 0,009)ln ¶ + 16,661(± 0,041)

Figure 75. Calcul de la dimension fractale de l'image 1

Intervalle de confiance : 99 %

8.2.2.2. Traitement des images 2 à 6

Sur  les  images  2  à  6  (Figure  74),  un  calcul  de  dimension  de  boîtes  carrées  a  été  réalisée  directe-
ment. La technique de calcul est assez simple. Chaque image a été convertie en bitmap monochrome. Dans
ce cas, la couleur noire est codée 0, tandis que la couleur blanche est codée 1. Ensuite, avec la méthode de
la  partie  entière,  il  est  extrêmement  simple  de  calculer  une  dimension  fractale  par  comptage  de  boîtes
carrées. La taille de ces images étant moins volumineuse que la première, le calcul se fait directement.
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ln N = -1,749H≤ 0,010Lln e + 16,419H≤ 0,055L
n°2 : résolution : 1 pixel = 3 m

ln N = -1,709H≤ 0,010Lln e + 16,093H≤ 0,063L
n°3 : résolution : 1 pixel = 8 m

ln N = -1,642H≤ 0,011Lln e + 15,609H≤ 0,074L
n°4 : résolution : 1 pixel = 25 m

ln N = -1,569H≤ 0,011Lln e + 15,369H≤ 0,082L
n°5 : résolution : 1 pixel = 99 m

ln N = -1,533H≤ 0,016Lln e + 13,966H≤ 0,120L
n°6 : résolution : 1 pixel = 345 m

Figure 76. Calcul des dimensions fractales des différentes images

Intervalle de confiance : 99 %

Sur chaque graphique, l'axe des abscisses représente le logarithme népérien de la résolution ; l'axe des ordonnées représente le logarithme népérien du
nombre de carré contenant une information. La dimension fractale correspond à la pente de la droite estimée en violet.
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8.3. Interprétation des résultats obtenus

La  Figure  77  présente  la  superposition  des  six  droites  de  régression  obtenues.  Pour  interpréter
correctement ces courbes, il faut rappeler que la gamme d’échelle de la courbe représentant la résolution à
1 m n’est pas complète. Ensuite,  il  faut remarquer que si  elle l’était,  on aurait  une gamme d’échelle com-
prise entre les facteurs 1 et 22 000 m. Ce qui signifie que la gamme d’échelle suffisante de 104  est atteinte.
La courbe représentant la résolution 3 m n’est pas significative de ce point de vue (entre 1 et 7 400 m). Il en
va de même pour les quatre autres.

Figure 77. Toutes les courbes estimées

L’objectif de cette étude est de montrer que la dimension fractale peut être utilisée comme mesure
de  l’information  géographique.  Le  premier  constat  que  l’on  peut  faire  de  l’analyse  précédente  est  que
chaque image  avec  une résolution  spécifique possède  une dimension  fractale  différent  (Figure  75,  Figure
76, Figure 78 et Figure 79), ce qui avait été remarqué par Dominique Badariotti (2005) et Gilles Maignant
(2007). Cela montre bien que l’irrégularité d’une structure géographique varie en fonction de sa résolution.
De  plus,  la  qualité  de  l’information  contenue  dans  les  dimensions  fractales  est  mesurée  par  leurs  écarts-
types  respectifs.  On  constate  que  la  qualité  de  la  mesure  décroît  en  même  temps  que  la  résolution  de
manière significative. Dès lors, on peut essayer de rechercher une relation entre la dimension fractale et la
résolution. La Figure 80 montre qu’il existe une relation linéaire entre la dimension fractale et le logarithme
népérien de la résolution à laquelle elle a été mesurée.

Image Dimension fractale t Erreur Logarithme de la résolution ln e

1 1,792 0,009 0,01

2 1,749 0,010 -1,09

3 1,709 0,010 -2,07

4 1,642 0,011 -3,21

5 1,568 0,011 -4,60

6 1,533 0,016 -5,83

Figure 78. Tableau de synthèse des dimensions fractales obtenues en fonction de leur résolution
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Figure 79. Graphique de synthèse des résolutions en fonction des dimensions fractales obtenues

Figure 80. Graphique de synthèse représentant des dimensions fractales obtenues en fonction de leur résolution

Intervalle de confiance : 99 %

Ce modèle linéaire (Figure 80) présente une relation hautement significative. En effet, lorsqu’il y a
peu de points ; on peut avoir un doute sur la qualité de l’ajustement. On peut alors calculer la variable t de
Student de ce dernier. Cette variable correspond à une combinaison du coeffication de corrélation  (valant
0,990 ici) et du nombre de variables n.

t = 
r N - 1

1 - r2
 = 111,242 (dans ce cas précis)

Plus  t  est  important,  plus  la  relation  est  significative,  à  condition  d’associer  cette  valeur  aux  différentes
tables de probabilité existantes de Student qui donnent le risque d’obtenir cet ajustement par hasard. Ici, la
probabilté de trouver une telle relation est inférieure à 10-4. 

À  partir  d’elle,  on  peut  proposer  un  exemple  pédagogique  autour  de  la  notion  de  « dynamique
d’échelle ».
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La dynamique d’échelle  repose  sur  une inversion  des  variables.  La  variable  explicative  devient  la
dimension  fractale  variable.  La  variable  expliquée  devient  le  logarithme  du  nombre  de  boîtes  comptées.
Dans  ce  cadre,  le  logarithme  de  la  résolution  ln ¶  devient,  par  analogie  aux  lois  du  mouvement,  une
« vitesse d’échelle » qui correspond à la dérivée première du logarithme du nombre de boîtes comptées par
rapport à la dimension fractale variable.

ln ¶ = 
d ln N

d t
 = at + b

ó d ln N  = (at + b)dt

ó ln N  = 
1
2

at2 + bt + c

Toutes les variables sont ici connues :

a = 21, 255 H≤0, 946L = F

m
= accélation d’ échelle constante

b = -38, 202 H≤1, 578L = ln ¶0

c = 0 = t0

Ainsi, après identification des variables, le logarithme du nombre de boîtes comptées est relié à la dimen-
sion  fractale  de  chaque  résolution  par  une  relation  quadratique  (Figure  81).  Autrement  dit,  le  nombre  de
boîtes comptées, à telle ou telle résolution, diverge en fonction de celle-ci de manière exponentielle (Figure
82).

ln N = 10,627t 2-38,202t

Figure 81. Relation quadratique entre la dimension fractale et le logarithme du nombre de boîtes comptées

N = e10,627 t2-38,202 t

Figure 82. Relation exponentielle entre la dimension fractale et le nombre de boîtes comptées
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À  partir  du  moment  où  le  nombre  de  boîtes  comptées  ne  diverge  plus,  une  résolution  plus  fine
n’apportera  plus  aucune  information.  Cela  signifie  que  l’on  entre  dans  un  domaine  non  fractal.  Ici,  la
dimension fractale qui fixe cette limite semble être tl > 1,70. Autrement dit,  si  t > tl  alors le changement

d’échelle  n’apportera  aucune  information  supplémentaire  sur  l’objet  géographique  qu’est  Avignon.  A
contrario,  si  t < tl  alors  le  changement  d’échelle  apportera  une  information  supplémentaire  sur  l’objet

géographique  qu’est  Avignon.  Cela  revient  donc  à  dire  que  l’on  peut  définir  l’existence  d’un  objet  géo-
graphique  non  fractal  lorsque  t > tl.  De  plus,  la  valeur  seuil  de  1,70  n’est  pas  sans  rappeler  l’analyse

effectuée dans le chapitre 7. On retrouve, dans ce cas particulier, avec des données sans bruits, la dimension
fractale  moyenne  des  taches  urbaines.  Néanmoins,  à  ces  résultats,  une  réserve  peut  être  formulée.  Elle
concerne la dimension fractale limite. En effet, il n’est pas impossible qu’il en existe une seconde en allant
vers les grandes échelles. Ici, l’unité de mesure la plus précise étant le mètre, on s’est arrêté au mètre, mais
il n’est pas impossible qu’en descendant vers une unité plus petite, une seconde limite apparaisse.

Pour  conclure,  il  est  bon  de  préciser  que  l’analyse  menée  confirme  les  résultats  de  Marie  Piron
(1993).  « Si  l’analyse  du  niveau  supérieur  rend  compte  au  mieux  des mêmes structures  […]  que celle  du
niveau inférieur, alors l’analyse du passage entre ces deux niveaux dégage une perte minime d’information
due à l’agrégation, mais qui ne bouleverse pas l’organisation des données au niveau le plus fin […] ; dans
ce  cas,  on  peut  ramener  l’étude  au  niveau  supérieur  d’agrégation  qui  conserve  alors  la  stabilité  du
phénomène observé au niveau inférieur. Si l’analyse du niveau supérieur, en revanche, ne se structure pas
comme  celle  du  niveau  inférieur,  alors  l’analyse  du  passage  rend  compte  d’une  même  organisation  du
nuage de points  que celle du niveau inférieur […] ;  dans ce cas,  les analyses aux deux échelles distinctes
apportent deux points de vue différents » (Piron, 1993). Le changement d’échelle transforme l’information
soit de manière considérable, soit de manière minime, ce qui correspond à la définition littéraire des objets
fractals.  Grâce à la  dimension  fractale,  on peut  visualiser  les  pertes et  les  gains d’information de manière
relativement simple, ce qui est une solution possible au M.A.U.P. (Modifiable area unit problem).

Cette  méthode permet  de  travailler  sur  l’objet  ville  définie  comme étant  une  tache urbaine partic-
ulière  où  la  ville  est  définie  par  le  négatif  de  son  réseau  intra-urbain.  Toutefois,  une  autre  définition  est
possible : celle où la ville est considéré comme un ensemble de bâtiments plus ou moins organisés. Le non
bâti correspond aux rues, aux places, aux cours et aux jardins privés ou publics (Allain, 2005). Le chapitre
suivant essayera de répondre à cette question à travers l’exemple de l’agglomération de Montbéliard.
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9
Morphologie de l'objet « ville » défini par ses 
éléments bâtis

La ville peut se définir également avec la répartition de ses bâtiments. Avec le développement des
systèmes  d’information  géographique,  de  nombreuses  communautés  urbaines,  d’agglomérations  ou  de
communes  ont  développé  des  cartes  très  précises  de  leurs  territoires.  Ainsi,  la  localisation  des  bâtiments
composant la communauté peut être réalisée de manière très méticuleuse ; tel est le cas de la Communauté
d’Agglomération des Pays de Montbéliard (Figure 83) qui réalisa un relevé de ses bâtiments au début des
années  2000.  Un calcul  de dimension  fractale  par  comptage de  boîtes carrées  permet  d’estimer la  dimen-
sion fractale d’une telle structure.

La  Figure  84  montre  une  structure  fractale  complexe.  En  effet,  la  ville  est,  dès  la  plus  grande
échelle au sens géographique, directement de nature fractale D1 = 1,355 ± 0,010. Lorsque l’on compare ce
résultat avec ceux des Gardons (Figure 37 et Figure 38) qui débutent avec un domaine non fractal, il peut
paraître  surprenant.  En  réalité,  les  villes  sont  toutes  organisées  dès  qu’elles  apparaissent  dans  l’histoire.
L’aménagement urbain est pensé dès que les habitations commencent à s’agglomérer. Si l’on prend le cas
romain ou grec, dès le départ,  les zones d’habitation sont pensées sur un système en damier appelé « plan
hippodamien »  qui  lui-même  renvoie  à  une  fractale  déterministe  rentrant  dans  la  catégorie  des  tapis  de
Sierpinski  (Batty  et  Longley,  1994 ;  Frankhauser,  1994).  Aussi,  une  ville  définie  par  ses  bâtiments  sera
directement de nature fractale, et c’est l’agrégation progressive de ces derniers qui va engendrer une tache
urbaine. Celle-ci sera d’une toute autre nature avec D2 = 1,583 ± 0,004. Autrement dit, l’échelle de coupure
(¶C = 99 m)  entre  les  deux  dimensions  fractales  prend  une  signification  très  particulière.  Il  s’agit  de
l’échelle  à  partir  de  laquelle  l’agrégation  du  bâti  est  telle  qu’elle  devient  une  tache  urbaine  où  il  se  fond
complètement.  Ce  résultat  peut  être  considéré  comme  significatif  puisque,  ici,  la  gamme  d’échelle  est
suffisante (de l’ ordre de 104) pour évaluer la structure fractale.

Cela  signifie  que  la  ville  définie  par  ses  bâtiments  ou  la  ville  définie  par  sa  tache  correspond  au
même objet géographique, mais à une échelle différente. L’articulation entre les deux définitions peut être
« optimisée » par  une  analyse  fractale  qui  révèle  l’échelle  de  coupure  à  partir  de  laquelle  l’objet  « ville »
change de définition. Ce changement de nature était plus difficile à identifier pour le cas d’Avignon où l’on
avait  choisi  la  définition  de  la  ville  par  son  réseau  intra-urbain.  Dans  ce  cas,  une  transition  fractal - non
fractal  n’existait  pas quelle que soit  l’échelle choisie,  mais il  n’y avait  pas non plus de transition fractal -
fractal tel que l’on peut le constater sur la Figure 84. Ainsi, une articulation scalaire pour une ville s’opère
entre le bâti et la tache urbaine. Autrement dit, l’affrontement des différentes écoles de géographie urbaine
(Lévy, 2005) peut trouver un terrain d’attente par une approche multi-échelle. Tout dépend de ce que l’on
veut étudier.
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Ce qui est donc essentiel, c’est d’identifier les échelles de coupure entre les domaines. En-deçà de
100 m, la gamme d’échelle entre dans le domaine d’étude de l’architecture. Au-delà jusqu’à 35 km, il s’agit
plutôt de celui de l’urbanité. La question fondamentale est donc de savoir si 100 m est un invariant que l’on
peut  retrouver  pour  toutes  les  villes  de  monde.  D’après  les  résultats  du  chapitre  7,  il  semblerait  que  non.
Toutefois, rien n’est acquis. La seconde question que l’on peut se poser est de savoir à quel niveau se place
l’échelle  de  coupure  entre  l’urbanité  et  le  réseau  urbain.  C’est  en  tout  cas  sur  cet  exemple  que  l’on  va
organiser un début de réflexion.

Figure 83. Carte des éléments bâtis de Montbéliard

Échelle : 400 pixels pour 1 000 m
Résolution : 1 pixel pour 2,5 m

Source des données : Communauté d'Agglomération du Pays de Montbéliard (CAPM)
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Dimension

fractale 1

1,355 ≤ 0,010

Dimension

fractale 2

1,583 ≤ 0,004

Échelle de

référence

1,5 Hsoit 5 mL

Échelle de

coupure

4,6 Hsoit

99,0 mL
Échelle

maximale

10,4 Hsoit

34 544 mL
Gamme

d'échelle

104 m

Figure 84. Calcul de la dimension fractale par la méthode de comptage de boîtes carrées

Plus généralement, on perçoit de nouveau l’idée suivante : pour avoir une structure fractale, il faut
nécessairement  deux niveaux  d’organisation.  La structure  multifractale  d’une ville  n’est  donc guère  éton-
nante en soi (Frankhauser, 1994), mais l’information essentielle de cette structure est l’échelle de coupure.
A partir de l’exemple de l’agglomération de Montbéliard, il est possible de généraliser les chapitres 7 et 8
en montrant que le processus intrinsèque qui organise une ville, ou plutôt une agglomération, suit lui-même
une logique multi-échelle qui, en l’état des connaissances actuel n’est soit pas quantifiable, soit pas calcula-
ble. Il faudra par conséquent établir des hypothèses théoriques de travail permettant de comprendre l’orig-
ine de cette morphologie multi-scalaire.

9.1. L'organisation multi-échelle des agglomérations

Avant  de  commencer  cette  partie,  il  faut  préciser  qu’il  est  préférable  ici  d’utiliser  la  notion  d’ag-
glomération  morphologique  au  sens  de  François  Moriconi-Ébrard  (1994),  c’est-à-dire  une  ville  comprise
comme un ensemble de bâtiments engendrant des « vides » et des « pleins », à l’instar du regard qu’ont les
architectes  et  les  urbanistes  de  la  ville  (Sitte,  1996).  C’est  par  l’existence  de  cette  dualité  morphologique
qu’une  agglomération  possède  une  structure  multi-échelle.  De  ce  fait,  il  faut  bien  séparer  les  notions  de
ville  et  d’agglomération,  car,  au  sens  de  François  Moriconi-Ébrard,  une  agglomération  peut  être  soit
urbaine,  soit  rurale,  la  différence  entre les  deux  se  déterminant  par  la  notion  de  concentration du  nombre
d’habitants en un lieu donné (l’urbaine ayant une concentration plus importante que la rurale).  Il est  donc
nécessaire de se fixer un seuil qui ne peut être qu’arbitraire. Par contre, la notion de ville est plus liée à des
spécificités fonctionnelles qui n’existe pas dans un village. De plus, l’agglomération morphologique doit se
distinguer de l’agglomération administrative, car elles ne coïncident que très rarement, le problème s’étant
posé  dans  le  chapitre  7.  Ces  problèmes  sémantiques  ayant  été  évoqués,  ce  chapitre  va  se  concentrer  sur
l’étude  de  l’agglomération  morphologique  en  tant  qu’objet  géographique  qui  articule  des  « vides » et  des
« pleins ».  Il  faut  toutefois  préciser  que  seront  considérés  comme  entrant  dans  la  catégorie  des  vides,  les
espaces non couverts par un toit.
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9.1.1. Les « vides »

Dans  une  agglomération  morphologique,  les  « vides » semblent  plus  nombreux  que  les  « pleins ».
C’est  par  les  « vides » que  l’organisation  multi-échelle  est  possible,  car  ils  empêchent  l’occupation  totale
d’une surface sur laquelle une population se concentre. Ces vides portent différents noms. Le vide le plus
évident que l’on perçoit sur la Figure 83, est celui laissé par les rues et les autres voies de communication
comme les voies d’eau et les voies ferrées. Les autres vides possibles sont les jardins privés ou publics, les
forêts ou les champs, mais aussi les cours privées et les places publiques. Ces « vides » sont vitaux pour les
agglomérations,  car  ils  assurent  un  renouvellement  permanent  de  l’air  (Vitruve,  1999).  En  effet,  si  l’on
imaginait  une  agglomération  entièrement  couverte,  l’air  serait  difficilement  renouvelé ;  il  faudrait  prévoir
des  puits  d’aération  pour  éviter  la  propagation  de  maladies.  Les  vides  permettent  donc un  assainissement
relativement efficace de l’agglomération. Ils assurent une déconcentration locale propre à établir  des bras-
sages  prophylactiques.  De ce  point  de  vue,  penser  le  plan  d’une  agglomération  est  fondamental  (Vitruve,
1999). Ensuite, seulement, les rues ont une fonction de circulation, et les places pensées comme des lieux
de  rencontre.  D’ailleurs,  les  places  se  localisent  principalement  près  des  lieux  de  cultes,  des  lieux
d’échanges commerciaux et des lieux de pouvoir. De plus, l’articulation des deux est assez complexe. Deux
cas  sont  possibles :  soit  les  rues  se  croisent  au  centre  de  la  place,  soit  elles  contournent  la  place  (Sitte,
1996), ce qui signifie que le vide a besoin d’être lui-même organisé, surtout depuis l’apparition des automo-
biles. Enfin, les différents espaces verts internes favorisent également cet assainissement de l’air. Les vides
sont donc vitaux à plus d’un titre pour une agglomération.

Camillo Sitte (1996, p. 92-96) expliquait qu’un plan de ville s’organise comme une maison. Qu’est-
ce qu’une maison sinon une organisation d’un vide à l’intérieur de parois que constituent les murs ? Ainsi,
les  couloirs  sont  ainsi  assimilables  à  des  rues,  et  les  pièces  à  des  places fermées.  L’organisation  est  donc
identique dans le cas d’une agglomération et d’une maison, car ce qui compte, c’est l’organisation du vide.
De plus,  la  position de la maison sur  son terrain  dépend fortement  de la  contrainte du relief.  Si  l’on peut
faire autrement,  on  ne construira pas  une maison sur  une pente forte.  Dès  lors,  on peut  résumer la nature
morphologique des vides d’une agglomération en une structure multi-échelle en quatre niveaux :

niveau  4 :  le  vide  autour  de  la  ville  (champs  et  forêts)  et  les  voies  de  communication  
inter-urbaines (routes, voies d’eau, voies ferrées) ;

niveau 3 : les places, les jardins publics et les rues ;
niveau 2 : les cours privées et les jardins privés ;
niveau 1 : les couloirs et les pièces.

À ces quatre niveaux, il est facile de percevoir qu’il en existe un cinquième : celui du réseau inter-
urbain qui, en fonction de la résolution, sera tantôt représenté par une tache urbaine (chapitre 7), tantôt par
des  points  (chapitre  17).  Ainsi,  l’organisation  des vides  d’une agglomération,  ou  d’un  réseau  inter-urbain
peut se résumer en cinq niveaux d’organisation. Pour établir formellement ces niveaux, il faudrait posséder
la répartition complète de tous les bâtiments sur un territoire donné. Cette information est connue, puisqu’il
s’agit  tout  simplement  du  cadastre,  mais  on  ne  possède  pas  à  l’heure  actuelle  des  machines  ayant  une
puissance de calcul suffisante pour traiter cette information. Ainsi, l’étude du cinquième niveau ne peut se
faire que pour lui-même (chapitre 10 à 17).
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9.1.2. Les « pleins »

L’organisation des « pleins » est beaucoup plus simple, puisqu’ils ne font référence qu’à une seule
entité : les bâtiments, quelle que soit leur fonction. Logiquement, les « vides » apparaissent plus riches que
les « pleins ».  Toutefois, que l’agglomération soit  urbaine ou rurale, il  existe de tout temps et en tout lieu
deux types de structures : les monuments à usage collectif direct ou indirect comme symbole du pouvoir, et
les maisons ou habitations à usage individuel  (personne ou famille) (Vitruve, 1999).  Les monuments sont
pensés  comme  devant  être  « éternels  et  « immuables ».  Ils  sont  rarement  totalement  détruits  même  s’ils
n’ont  plus  leur  fonction  initiale.  Combien  de  mairies  en  France  se  trouvent  dans  d’anciens  châteaux ?
Combien  de  bâtiments  antiques  ou  médiévaux  ont-ils  eu  plusieurs  vies  pendant  les  périodes  qui  sont
postérieures  à  leur  construction ?  Ainsi,  ils  structurent  dans  le  temps  et  dans  l’espace  l’organisation  de
l’agglomération.  A contrario,  la  maison n’est  pas pensée  pour  durer  dans  le  temps.  Elle n’a  pour horizon
qu’une destruction programmée. Les architectes disent généralement qu’une maison possède une durée de
vie  moyenne  d’un  ou  deux  siècles  au  maximum,  et  encore ;  pour  les  habitations  collectives,  comme  les
HLM, la durée est réduite à environ trente ans.

On  peut  alors  résumer  les  « pleins »  en  trois  niveaux,  calés  sur  les  niveaux  déterminés  pour  le
« vide » :

niveau 5 : le réseau inter-urbain représenté par un nuage de points ;
niveau  4 :  la  tache  urbaine  représentant  une  surface  issue  de  l’agrégation  de  l’ensemble  

des bâtiments ;
niveau 2 : les bâtiments réprésentant une surface individuelle occupée.

Toutefois, le plein peut générer le vide, car la destruction d’une maison crée un nouveau vide que
l’on peut soit combler (reconstruction d’un ou de plusieurs bâtiments), soit laisser (création d’une nouvelle
place,  d’un  nouveau  jardin  public).  Ainsi,  le  processus  de  construction  est  indétachable  de  l’histoire  de
l’urbanisme  de  l’agglomération  (Goze,  1976).  Il  faut  donc  comprendre  comment  s’articulent  ces  vides  et
ces pleins.

9.1.3. L'articulation des vides et des pleins

L’articulation entre les vides et les pleins semblent s’optimiser dans l’organisation multi-échelle de
l’agglomération morphologique. C’est le sens de la dimension fractale constante définie dans le chapitre 7
pour les  taches urbaines,  à savoir  D = 1,7 ± 0,1.  Le problème est d’essayer  de comprendre la signification
de cette valeur.

Pierre  Frankhauser  (1994)  avait  proposé  de  comparer  les  dimensions  fractales  mesurées  sur  les
agglomérations aux  différentes fractales déterministes  existantes.  Le  modèle qui  convient  le  mieux  est  un
tapis  de  Sierpinski  (Frankhauser,  1997)  dont  la  dimension  fractale  est  proche  de  1,7.  Pour  construire  un
tapis ayant cette dimension fractale, il faut utiliser les paramètres suivants : un facteur d’échelle q = 5 et un
nombre  de  carrés  pleins  p  valant  16.  Autrement  dit,  on  partitionne  un  grand  carré  en  vingt-cinq  petits
carrés, et  on en choisit  seize à chaque itération.  La constante caractérisant les  échelles est  alors  la dimen-

sion fractale qui vaut dans ce cas : 
ln 16
ln 5

 soit environ 1,7. Les tapis classiques étant peu réalistes, la Figure

85 propose une approche pseudo-aléatoire.

Pour ce, on construit  un grand carré dont la taille est  10 000 × 10 000 pixels. Puis, on le divise en
vingt-cinq  petits  carrés  ayant  un  côté  de  2 000  pixels ;  on  demande  à  l’ordinateur  de  choisir  de  manière
aléatoire seize de ces carrés que l’on noircit. Chaque carré noirci est à nouveau divisé en vingt-cinq petits
carrés  de  400  pixels  dont  on  choisit  seize  petits  carrés,  et  ainsi  de  suite,  jusqu’à  ce  que  l’on  atteigne  la
résolution de l’image (ou la taille du pixel). Un tel processus n’est déterminé que par le choix (ici pseudo-
aléatoire)  des  pixels  noirs :  un  pixel  noir  peut  devenir  blanc  ou  rester  noir,  mais  un  pixel  blanc  ne  peut
devenir noir : il reste blanc.
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Étape 1 : ¶ = 10 000 pixels Étape 2 : ¶ = 2 000 pixels Étape 3 : ¶ = 400 pixels

Pixels du comptage de boîtes

N = 1

B = 0

Pixels réels

N = 100 000 000

B = 0

Pixels du comptage de boîtes

N = 16

B = 9

Pixels réels

N = 64 000 000

B = 36 000 000

Pixels du comptage de boîtes

N = 256

B = 369

Pixels réels

N = 40 960 000

B = 59 040 000

Étape 4 : ¶ = 80 pixels Étape 5 : ¶ = 16 pixels Étape 6 : ¶ = 3 pixels

Incalculable par rapport à

l'étendue choisie

Pixels du comptage de boîtes

N = 4 096

B = 11 259

Pixels réels

N = 26 214 400

B = 73 785 600

Pixels du comptage de boîtes

N = 65 536

B = 325 089

Pixels réels

N = 16 777 216

B = 83 222 784

Figure 85. Construction d'une fractale pseudo-aléatoire à partir d'un tapis de Sierpinski

Les  formes  obtenues  sont  proches  de  la  Figure  83,  mais  il  manque  un  détail  très  important :  les
voies  de  communication  et  la  centralité.  Ce  test  montre  bien  l’importance  des  rues,  par  exemple,  dans  la
structure d’une agglomération, donc celle de son plan. L’image finale obtenue par la simulation ressemble
plus à un labyrinthe qu’à une agglomération de bâtiments (Le Bras, 2000). De plus, si  l’on veut respecter
l’idée de concentration de population pour constituer une agglomération urbaine. Le nombre de bâtiments
au centre d’une telle structure ne peut être vide. Ainsi, la Figure 86 montre une simulation où, initialement,
le choix du vide de l’étape n°2 est restreint aux carrés périphériques (soit  16 carrés au lieu de 25), ce qui
permet de faire émerger une pseudo-centralité. Les règles précédentes s’appliquent à partir  de l’étape n°3.
Ces images plus réalistes,  si  l’on les compare à la Figure 83, ne permettent toujours pas de percevoir une
organisation des rues.

150   



Étape 1 : ¶ = 10 000 pixels Étape 2 : ¶ = 2 000 pixels Étape 3 : ¶ = 400 pixels

Étape 4 : ¶ = 80 pixels Étape 5 : ¶ = 16 pixels Étape 6 : ¶ = 3 pixels

Incalculable par rapport à

l'étendue choisie

Figure 86. Construction d'une fractale pseudo-aléatoire à partir d'un tapis de Sierpinski avec une condition supplémentaire à la première itération

Sur ce modèle (Figure 86), on estime une dimension fractale par comptage de boîtes carrées à partir
de l’image de l’étape n°5. Exceptionnellement, pour ce cas, on utilisera une résolution en pixel,  et non en
système  métrique,  comme  cela  s’est  fait  jusqu’à  présent.  La  plus  basse  résolution  de  cette  image  est  16
pixels ;  l’étendue  maximale  est  10 000  pixels.  La  Figure  87  montre  le  résultat  obtenu.  La  valeur  de  la
dimension  fractale  mesurée  est  1,668 ± 0,006  qui  est  une  très  bonne  estimation  de  la  valeur  théorique,  à
savoir 1,723. Toutefois,  sur cette figure,  on remarque l’existence d’une échelle de coupure valant environ
ln(3,5) º 33  pixels.  Cette  échelle  n’est  pas  du  même ordre  de grandeur  que celle observée  dans  le  cas  de
Montbéliard (Figure 83 et Figure 84), ou encore dans celui des taches urbaines (chapitre 7). En effet, ici, il
s’agit  d'un  artefact  de  mesure.  Laurent  Nottale  et  alii  (2009 ;  2010)  montrent  que  lors  d'un  calcul  d’une
dimension fractale de boîtes, il existe toujours un biais de l’ordre de 0,7 (en mesure logarithmique). Ainsi,
la  Figure  88  présente  une  « loi  de  transition  fractal - fractal »  qui  donne  une  meilleure  estimation  de  la
dimension  fractale  aux  petites  échelles :  D2 = 1,687 ± 0,006  (dimension  fractale  de  boîtes).  Aux  grandes

échelles,  le  meilleur  ajustement  donne  D1 = 1,194 ± 0,013  (biais  dû  à  la  méthode).  À  partir  de  ces  deux

résultats, on peut revenir sur l’interprétation des transitions fractal - fractal précédentes : soit il s’agit d’une
vraie gamme d’échelle qui identifie des structures très fines qui correspondent soit à un objet géographique
particulier  (l’ensemble  des  bâtiments),  soit  à  un  bruit  du  à  une  méthode  d’extraction  de  données ;  soit  il
s’agit  d’un  biais  dû  à  la  méthode d’estimation  de  la  dimension  fractale.  En  l’état,  il  est  impossible  de  se
prononcer pour les mesures effectuées dans les chapitres 7 et 8.

De plus, un calcul  de la dimension fractale des pixels blancs a été réalisé. Sa valeur est  d’environ
1,9 soit une valeur très proche de 2, c’est-à-dire de la dimension topologique de l’espace support. Dans ce
cas, la dimension du fond est donc différente de celle de la forme. De plus, on pourrait énoncer que le vide
remplit l’espace, c’est-à-dire que le vide domine le plein. Une géographie « du vide » est donc à construire.
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Figure 87. Estimation de la dimension fractale du modèle du comptage de boîtes carrées

Figure 88. Estimation par une loi de transition fractal - fractal du modèle par la méthode du comptage de boîtes carrées

Quoi qu’il en soit, ces réflexions montrent que l’on peut rapprocher les structures multi-échelles des
agglomérations des fractales déterministes obéissant à des règles de répartition pseudo-aléatoire conforme à
la  dimension  fractale  des  taches  urbaines  estimée  dans  le  chapitre  7.  De  ce  fait,  si  l’organisation  d’une
agglomération  est  scalaire  avant  d’être  spatiale,  la  morphogenèse  et  la  morphologie  urbaine  peuvent  se
réduire à quatre changements d’échelles :

1. Comment  est-on  passé  du  couloir  à  la  rue  ?  Comment  est-on  passé  des  maisons  aux
monuments (ou inversement) ?

2. Comment est-on passé du plan en damier au plan radio-concentrique ?
3. Comment est-on passé de la rue à la route ?
4. Comment est-on passé de routes indépendantes à un réseau inter-urbain ?

Cette partie a essayé de montrer qu’un raisonnement multi-échelle était sans doute la clé qui permet-
tra d’obtenir  un certain  nombre  de réponses.  Pour ouvrir  quelques  pistes de  réflexion,  on peut  même for-
muler  au  moins  deux  hypothèses  de  travail,  non  indépendantes  l’une  de  l’autre,  avant  de  conclure  ce
chapitre et cette partie.
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9.2. Le poids de l'histoire (hypothèse 1)

Les  principales  villes  du  monde  ont  une  épaisseur  historique  plus  ou  moins  importante.  Cela  se
vérifie essentiellement au niveau du plan de la ville, ou, plus généralement, de l’agglomération. Par exem-
ple, les villes proche et moyenne orientales, indiennes et chinoises sont plurimillénaires. D’autres, comme
les villes d’Amérique du Nord ou d’Afrique n’ont que quelques siècles d’existence. Le moment de création
d’une ville dans l’histoire est très important, car, selon la culture et les capacités techniques, elles n’ont pas
la même forme initiale : en Orient, on préfère la ville circulaire ; Bagdad au XIe  siècle en était l’archétype.
En Occident, l’urbanisme oscille entre le plan hippodamien et le plan circulaire. En effet, en règle générale,
les villes fondées par les Grecs et les Romains suivent un plan en damier, mais, dès le début de la période
médiévale,  elles  s’arrondissent pour devenir  radio-concentrique.  L’archétype est  bien sûr  le plan de Paris.
En  Chine  et  en  Amérique  du  Sud,  le  plan  en  damier  était  la  règle  (Beijing,  Tenochtitlan,  etc.),  de  même
qu’en Amérique du Nord, après l’arrivée des colons européens. À l’origine, les formes euclidiennes domi-
nent, comment dès lors deviennent-elles fractales ou multifractales au cours des siècles.

La question de la fractalité peut être divisée en deux sous-problèmes. Le premier correspond au cas
d’un  plan  d’urbanisme  parfaitement  conçu  en  damier  ou  en  cercle.  Cette  régularité  est  maintenue  par  les
politiques  urbanistiques  menées  (Sitte,  1996),  et  la  fractalité  naît  de  l’agrégation  entre  les  maisons,  puis
entre les quartiers, avant d’atteindre les limites physiques de la ville. Autrement dit, cela signifie que, dans
le cadre,  d’une telle planification,  seules les  rues ou les routes « commandent » régulièrement  la fractalité
urbaine, les places et les jardins jouant un rôle plus anecdotique. Camillo Sitte (1996) précise que tout cela
a été remarqué par l’Union des Associations d’Architectes et d’Ingénieurs Allemands à Berlin en 1874. « 1.
La planification d’une extension de ville consiste pour l’essentiel à définir les directions fondamentales de
tous les  moyens de communications :  routes,  tramways à chevaux, chemins de fer  à vapeur,  canaux, qu’il
faudra  traiter  de  manière  systématique,  et,  par  conséquent,  sur  une  vaste  étendue.  2.  Dans  un  premier
temps,  le  réseau  des  rues  ne  doit  comporter  que  les  axes  principaux  (en  tenant  compte,  autant  qu’il  est
possible, des chemins existants) et les voies secondaires dont le tracé est déterminé de manière certaine par
les  conditions  locales.  La  division  subséquente  du  terrain  doit  être  entreprise  au  gré  des  besoins  à  court
terme,  ou  bien  laissée  à  l’initiative  privée.  3.  La  répartition  des  divers  quartiers  doit  résulter  du  choix
judicieux de leur situation et du respect d’autres facteurs caractéristiques. Elle n’est soumise qu’à une seule
contrainte, qui est celle des règlements d’hygiène relatifs à l’industrie » (Sitte, 1996, p. 130-131).

Le second sous-problème suppose une planification moins contraignante. Dans le cas d’une exten-
sion de la ville, la route existe avant les habitations, mais elle n’est pas figée. On peut prétendre que cette
route est  « mobile » dans le  sens où il  est  facile de la  déplacer, si  elle devenait  gênante pour l’urbanisme.
Toutefois, si la rue remplace la route, les habitations vont « figer » celle-ci un certain temps, et dans ce cas,
la  modification  du  réseau  intra-urbain  ne  sera  possible  que  si  une  ou  des  habitations  disparaissaient.
Autrement  dit,  la  route  ou  la  rue  contraignent  les  habitations  ou  les  monuments ;  les  habitations  ou  les
monuments figent la rue.

L’organisation urbaine est donc directement fractale quels que soient le plan d’origine ou l’absence
du plan à l’origine.
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9.3. Le rôle de l'interaction entre le réseau inter-urbain et le réseau intra-urbain 
(hypothèse 2)

Le rôle des routes dans la morphogenèse et la morphologie urbaine n’est plus à démontrer (Allain,
2005),  mais  qu’est-ce  qui  commande  la  localisation  des  routes ?  La  réponse  à  cette  interrogation  peut
paraître évidente : c’est la position relative des autres villes d’une part, et celle des villages alentours de la
ville  considérée  d’autre  part.  Certains  penseront  alors  que  l’on  retrouve  le  modèle  gravitaire,  ce  qui  est
incontestable,  mais  le  point  essentiel  qu’apporte  la  structuration  en  échelle,  est  que  ce  qui  commande
l’organisation  globale  du  réseau  inter-urbain  à  petite  échelle  n’est  ni  plus  ni  moins  que  la  position  des
routes  d’une  ville  à  très  grande  échelle.  Cela  signifie  que  si  l’on  a  pu  identifier  une  gamme  d’échelles
correspondant  au  bâti  et  une  gamme  d’échelle  correspondant  au  réseau  inter-urbain.  Une  nouvelle  fois,
l’information  essentielle  de  l’organisation  d’un  espace  géographique  est  donc  l’organisation  en  échelle.
Ainsi, on peut proposer un schéma (Figure 89) qui essaye d’organiser les cinq niveaux précédemment cités.
Parmi ces cinq niveaux, trois niveaux sont davantage privilégiés en géographie : le niveau 3, le niveau 4 et
niveau  5.  Toutefois,  les  niveaux  1  et  2  font  partis  de  ce  que  l’on  appelle  la  géographie  de  l’intérieur
(Staszak, 2001).

Figure 89. Schéma de synthèse de l'organisation des cinq niveaux d'organisation d'une agglomération

Les résultats des deux chapitres précédents doivent être nuancés. En effet, l’organisation en échelle
d’une  ville  dépend  explicitement  du  niveau  de  détail  servant  de  référence :  la  transformation  en  échelle
d’une tache en éléments bâtis a abouti à l’apparition d’une structure plus complexe dont la modélisation a
permis  la  déduction  d’une  échelle  de  coupure  marquant  la  transition  entre  les  éléments  bâtis  et  la  tache
urbaine. La définition morphologique d’une ville est donc bien multi-scalaire, c’est-à-dire fractale.

Ainsi, d’après les résultats du chapitre 7, la dimension fractale moyenne de 1,725 doit être comprise
comme  la  mesure  d’une  dimension  fractale  des  taches  urbaines,  mesure  compatible  avec  la  dimension
fractale de la  tache de Montbéliard.  Toutefois, le  chapitre 8 a montré que la dimension fractale dépendait
explicitement de la résolution, résultat confirmé par le chapitre 9.
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Tous les résultats des chapitres 6 à 9 ont  montré des analyses morphologiques purement spatiales,
c’est-à-dire que le temps qu’il soit géologique ou historique, n’intervient pas. La partie suivante essayera de
combler  cette  lacune  en  proposant  une  méthode  que  l’on  pourrait  appeler  « scalo-spatio-temporelle »  à
travers l’étude de la répartition des châteaux dans l’espace picard et artésien du Xe siècle à nos jours.
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Partie 3. Morphométrie et analyse spatio-temporelle 

en géographie

Étude du cas de la répartition des châteaux dans l’espace géohistorique 
du nord de la France (Picardie et Artois)
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10
Présentation de l'analyse de la répartition des 
châteaux en Picardie historique

L’analyse  de  la  répartition  des  châteaux  en  Picardie  historique  est  l’aboutissement  d’une  longue
étude  commencée  en  2004  (Forriez,  2005).  Au  début  de  celle-ci,  il  s’agissait  d’essayer  d’expliquer  de
manière géographique un objet archéologique et historique : la motte de Boves. Diverses méthodes ont été
proposées :  une  analyse  multi-scalaire  au  sens  d’Yves  Lacoste  permettant  d’étudier  les  interactions  entre
Boves et les autres sites castraux, une analyse log-périodique du site de Boves et un début d’analyse radiale
autour  de  ce  que  l’on  avait  appelé  « pôles  organisateurs »  dans  les  limites  du  comté  d’Amiens  primitif
(Forriez  et  Martin,  2008 ;  Martin  et  Forriez,  2008).  Toutefois,  si  ces  analyses  étaient  prometteuses,  elles
étaient loin d’être satisfaisantes.

L’analyse  multi-scalaire  au  sens  d’Yves  Lacoste  était  fortement  incomplète  dans  la  mesure  où  la
compréhension des événements historiques ne peut s’entendre sans une mise en perspective avec la construc-
tion du royaume de France, et plus largement de la construction des États européens tels que l’on peut les
connaître aujourd’hui. Ainsi, si l’on peut qualifier cette analyse de « spatio-temporelle », on peut également
prétendre  qu’elle  est  multi-échelle  au  sens  large  du  terme.  Quelques  analyses  complémentaires  vont  être
proposées dans les chapitres suivants.

L’analyse  radiale  pratiquée  alors  était  également  insuffisante.  Seules  dix  localisations  (Boves,
Moreuil,  Amiens,  Corbie,  Poix,  Folleville,  Albert,  Picquigny,  Montdidier,  Conty)  de  l’espace  avaient  été
analysées. De plus, la base de données ne comportait que les châteaux connus du comté d’Amiens primitif,
ce qui était une limite à l’analyse scalo-spatio-temporelle de la répartition des châteaux puisque, dès le XVe

siècle,  l’Amiénois  fut  réintégré  dans  un  ensemble  territorial  plus  vaste :  la  Picardie  historique.  Il  fallait
donc  augmenter  l’étendue  de  la  répartition  des  châteaux  à  l’ensemble  du  nord  de  la  France  (Aisne  (02),
Nord  (59),  Oise  (60),  Pas-de-Calais  (62),  Seine-Maritime  (76),  Somme  (80)),  et  tracer  les  autres  comtés
pour réaliser de véritables études de la structure de ces territoires.

L’objectif de ce travail est de proposer une méthode générale d’étude des distributions scalo-spatio-
temporelles  de  longue  durée  en  géographie.  Ce  chapitre  introductif  rappellera  la  définition  relativement
complexe d’un château, puisqu’elle ne se limite pas à l’image populaire de ce dernier. Chemin faisant, une
présentation des données relatives à la Picardie historique clôturera ce chapitre.
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10.1. Les mottes et les châteaux : éléments de définition

Traditionnellement, les historiens écrivent que les luttes du Xe siècle ont engendré, à la fin de celui-
ci,  une  forte  croissance,  peut-être  exponentielle,  d’un  nouveau  type  de  fortifications  et  de  résidences :  le
château. Il  s’agit  d’une fortification et d’un logement  individuel construit  pour un seigneur (le  chef)  et  sa
mesnie (ses guerriers).  Cet  ensemble est  généralement  complété par  une basse-cour peuplée par  des habi-
tants-paysans. Une hypothèse plus récente prétend que les châteaux n’ont jamais eu pour vocation première
d’être des forts. En effet, comme le soulignent Jean-Pierre Arrignon et Jean Heuclin, « à partir du milieu du
Xe  siècle,  [les  invasions  normandes,  sarrasines  ou  hongroises]  avaient  pratiquement  cessé  néanmoins  le
paysage  continua  de  se  hérisser  de  castra,  munitiones,  turres,  donjio,  un  siècle  avant  le  « blanc  manteau
d’églises ». Leur rôle défensif est donc à écarter. Leur développement fut le signe d’une évolution et d’un
éparpillement des pouvoirs de commandement (droit de ban). C’était une affirmation claire de la potestas,
légitime  ou  non  sur  l’environnement.  Le  château  était  d’abord  le  signe  de  la  loi  ou  de  la  coutume.  C’est
pourquoi les rois, les comtes et les immunistes furent les premiers  à en élever. Ce pouvait être une motte de
terre de quelques mètres, construite en un ou deux mois à coup de corvées publiques, et  surmontée d’une
tour  en  bois  […].  Dans  l’espace  méridional  (Provence-Septimanie-Catalogne-Auvergne),  mais  également
aux  nombreux  et  civitates,  les  vestiges  antiques  étaient  nombreux  et  facilement  ré-aménageables  [surtout
dans l’espace méridional comme le « château des arènes » à Nîmes ou le théâtre d’Orange, etc.]. C’étaient
des sites dont on conservait le souvenir d’utilité publique et de caractère sacré. L’usage de la pierre tradui-
sait  aussi une ancienneté qui confortait  la légitimité d’un pouvoir,  parfois nouveau. Le castrum  était  alors
accolé  au  bourg,  l’oppidum  élargi,  et  l’escarpement  aménagé  […].  La  « maison-forte »  visible  était  un
palais où résidait le comte. Néanmoins, en Flandre ou en Normandie, aucun château n’échappait à l’autorité
du comte ou du duc. Le châtelain était un officier subalterne, nommé et révocable, pour gérer un pagus ou
un espace monastique » (Arrignon et Heuclin, 2008, p. 100).

Quoi qu’il en soit, le « château à motte » paraît avoir été l’instrument de la révolution castrale, car
ils  connurent  une  période  de  grande  expansion  du  XIe  au  XIIIe  siècle.  Après,  ce  type  de  construction  fut
abandonné  (Debord,  2000).  Si  les  châteaux  marquèrent  à  jamais  les  mémoires,  ce  ne  fut  pas  le  cas  des
mottes castrales. Ainsi, il faut rappeler les distinctions et les ressemblances entre une motte et un château.

10.1.1. La motte castrale

Au  XIXe  siècle,  quelques  archéologues  ont  différencié  les  tumuli  pré-historiques  des  mottes  cas-
trales médiévales. Généralement, on différencie une motte d’un tumulus par la présence d’un fossé, c’est-à-
dire par un caractère défensif. Les premières études sont celles d’Arcisse de Caumont et de Camille Enlart
(in Debord, 2000, note 30, p. 60). Ils ont analysé quelques chroniqueurs et la broderie de Bayeux. Ils en ont
conclu que les  mottes sont  « un des plus anciens types de châteaux  féodaux. ».  Toutefois,  à  cette époque,
les  mottes étaient  étudiées  très  rapidement,  au  profit  des  châteaux  en pierre,  toujours  visibles,  qui  sont  la
marque d’une histoire continue et connue. Après ces premières analyses, les historiens, entre la fin du XIXe

siècle  et  les  années  1970,  ignorèrent  les  mottes  et  les  châteaux  de  pierre,  le  support  matériel  ne  pouvant
faire l’objet d’une objectivation scientifique. Depuis les années 1970, les « mottes » et les « fortifications »
semblent  de  nouveau  intéresser  les  historiens,  et  surtout  les  archéologues.  En  effet,  « L’archéologie  de
terrain permet de mieux connaître les lieux du pouvoir : motte, bourgs castraux et châteaux » écrit Philippe
Poirrier (2000, p. 56). Le château est ainsi devenu une source historique, nécessaire à l’étude de la châtelle-
nie, du peuplement, mais aussi à celle des bourgs castraux et  des réseaux de communication, du cadre de
vie de la société courtoise et du marchandage, dans la mesure où les châteaux furent pendant un temps, un
avoir  précieux.  Sur  cette  base,  la  motte  devient  un  objet  d’étude  à  part  entière.  Avec  Gabriel  Fournier
(1978) et Michel de Bouärd (1975), elle est devenue un objet scientifique (Figure 90).
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Figure 90. Rappel épistémologique sur l'objet d'étude « motte » 

10.1.1.1. La motte, objet historique

Les historiens débattent sur la définition du terme. Le mot « motte » vient du latin motta qui signifie
l’aspect concret du site fortifié. « L’acte de naissance du château à motte se situe donc dans le courant du
Xe  siècle, avec un coefficient de certitude satisfaisant » (Rocolle, 1994, p. 40). Le terme semble apparaître
pendant la seconde moitié du XIe  siècle, mais la construction de châteaux sur une hauteur est  mentionnée
par des périphrases avant 1040. Michel Bur (1999) pense que Flodoard (893/894-966), un clerc archiviste
de  Reims,  désignait  la  motte  par  le  terme  munitio.  Pour  Michel  Bur,  les  premiers  châteaux  sont  en  bois
parce qu’ils coûtent moins cher. À cette idée, il  faudrait ajouter que, vraisemblablement, ils le sont car on
ignorait combien de temps ils allaient servir. Le terme est rarement cité par les contemporains : en 1040, sur
l’acte de fondation de la Trinité de Vendôme ; en 1041, sur l’acte du cartulaire de l’abbaye de Saint-Maix-
ent  où  il  est  écrit  « castrum  qui  dicitur  mota »  (La  Mothe-Saint-Héraye) ;  au  XIIe  siècle,  chez  les
chroniqueurs  Ordéric  Vital  et  Suger.  Au  terme  « motte »,  on  préfère  castrum,   castellum,  munitio  pour
désigner des fortifications diverses. Michel Bur (1999) définit le castrum par un espace relativement vaste,
le terme signifie « trancher, couper du reste ». Le castellum qui donnera le mot « chastel », toujours défini
par cet  auteur, est  une résidence privée d’un lignage, c’est  un espace de moindre dimension, plus facile à
défendre.

Pour  André  Debord,  « il  s’agit  […]  de  tertres,  qui  peuvent  être  constitués  de  terre  rapportée  et,
donc,  être  entièrement  artificiels.  Mais,  en  fait,  assez  souvent,  le  tertre  comporte  une  partie  naturelle,  un
moyen rocheux retaillé et complété par des apports extérieurs. Il est presque toujours entouré d’un profond
fossé  et  l’ensemble  consiste  -  indépendamment  des  constructions  de  bois  ou  de  pierre  qu’il  porte  à  son
sommet -  en un élément  défensif puissant,  avec une douzaine de mètres de dénivellation entre le  fond du
fossé  et  le  sommet  du  tertre » (Debord,  2000,  p. 63).  Pour  Michel  Bur,  « ce  tertre  artificiel,  fait  partielle-
ment ou totalement de main d’homme, soit par accumulation de terre, soit par remaniement d’un relief, est
toujours entouré d’un fossé. […] La terre arrachée au fossé sert à construire le tertre, qui peut aussi, excep-
tionnellement,  être  érigé  en  deux  étapes  à  partir  d’une  petite  enceinte  circulaire  comblée »  (Bur,  1999,
p. 31).  Le  diamètre  à  la  base  est  compris  entre  30  et  100  mètres,  le  diamètre  au  sommet,  entre  10  et  60
mètres et la hauteur tourne autour de 20 mètres.
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Pour  Dominique  Barthélemy,  c’est  un  « amas  de  terre  de  forme  tronconique  servant  de  fortifica-
tion ; souvent flanquée d’une baile (ou basse-cour) » (Barthélemy, 1990, p. 287). Pour André Châtelain, il
s’agit  d’un  « monticule  naturel  ou  plus  souvent  artificiel,  destiné  à  porter  une  fortification »  (Châtelain,
1996,  p.  108).  Pour  Jean-Marie  Pesez,  le  château  à  motte  est  « une  butte  artificielle,  circulaire  et  tron-
conique »  (DROM,  1999,  p. 179-198).  On  peut  ainsi  accumuler  les  auteurs  qui  ont  cherché  à  définir  le
terme.  Ce  qui  était  important  à  remarquer,  c’est  que  la  définition  du  terme  se  trouve  généralement  dans
celle  de  « château ».  Rares  sont  les  auteurs  qui  ont  défini  le  terme  « motte »  pour  lui-même.  Dans  les
auteurs  cités,  il  n’y  a  que  Dominique  Barthélemy  (1990)  qui  différencie  dans  son  lexique  « château »  et
« motte ». L’expression dans laquelle se trouve le terme est de deux formes, soit l’auteur emploie « château
à  motte »,  soit  il  emploie  « château  sur  motte ».  La  première  expression  lie  implicitement  la  construction
défensive à son support : la motte de terre, ce qui signifie que la construction de la motte et celle du château
sont étroitement liées. Le château et sa motte sont étudiés ensemble, formant un tout : pas de château sans
motte,  pas  de  motte  sans  château,  tandis  que  « château  sur  motte »  matérialise  plus  un  intérêt  pour  le
château construit, achevé, et non pour son support de construction qu’est la motte.
10.1.1.2. L'archéologie et les mottes

Les historiens laissent aux archéologues l’effort de recensement des mottes afin d’en dresser l’inven-
taire et d’en programmer l’éventuelle fouille. La problématique d’étude est simple : pourquoi le nombre de
sites aristocratiques et fortifiés augmente-t-il fortement à la fin du Xe  siècle ? Quelles sont les fonctions de
ces mottes si nombreuses ?

La  motte  est  une  résidence  fortifiée  de  l’aristocratie  châtelaine.  C’est  le  point  de  départ  de  nom-
breuses  châtellenies.  La  fonction  de  résidence  est  liée  à  une  fonction  politique.  Sont-ce  des  résidences
privées ou publiques ? On possède la mention et l’existence de mottes d’attaque ou de siège. Il  existe des
petites mottes avec des tours de guet. Les mottes sont donc des objets multifonctionnels. « Une des grandes
acquisitions  de  l’archéologie  médiévale  de  ces  trente  dernières  années  a  été  d’attirer  l’attention  sur  les
mottes :  il  s’est  ainsi développé une recherche qui a permis de renouveler  complètement la problématique
historique. L’importance des châteaux de terre - et,  en particulier,  de la motte, qui restera comme le sym-
bole  de  l’essor  de  la  fortification  individuelle  et  de  la  révolution  castrale  -  ne  doit  cependant  pas  faire
oublier que celle-ci s’est accomplie de bien d’autres façons et en s’appuyant sur d’autres formes castrales »
(Debord,  2000,  p. 77).  L’auteur  rappelle  qu’il  y  a,  au  moins,  deux  structures  connues :  la  motte  dans  la
France du nord et les roqua dans la France du sud ou en montagne.

Les archéologues préfèrent l’expression « château à motte ». Certains abandonnent  même le terme
« château »  pour  celui  de  « motte »  tout  court.  L’objet  « motte »  prend  son  indépendance  par  rapport  au
château. Cela se justifie  par le fait  que, dans la logique chronologique, on a d’abord construit  la motte de
terre avant de construire le château, mais qu’est-ce qui prouve qu’elle a été élaborée peu avant la construc-
tion du château ? Généralement, rien. D’où l’intérêt d’étudier cette structure pour elle-même. À partir de là,
les archéologues interviennent, mais malheureusement peu de mottes ont été fouillées en France.
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10.1.1.3. La motte, une forme spatiale

La motte est une forme saillante et prégnante qui se déploie dans l’espace géographique. Elle peut
donc faire l’objet d’une étude géographique.  Cette forme s’est  cristallisée aux alentours du Xe-XIe  siècles
en Occident, comme un symbole de pouvoir, à un moment où il n’existait plus de pouvoir central suffisam-
ment puissant pour assurer la sécurité et, plus généralement, l’organisation de l’espace occidental médiéval.
C’est un processus qui s’inscrit dans une différenciation spatiale par fragmentation des territoires et cela se
traduit  dans  le  processus  de  la  construction  de  points  singuliers.  La  motte  est  avant  tout  une  production
anthropique, c’est ce qui la différencie des buttes témoins en géomorphologie, par exemple. Généralement,
la  motte  est  tronconique,  et  sert  de  support  à  un  bâtiment  à  caractère  défensif.  Comme la  motte  structure
l’espace à des niveaux différents, il peut s’agir d’un objet géographique. D’abord, elle donne sa cohérence à
un  complexe  politique  et  religieux.  Ensuite,  elle  s’articule  au  sein  d’un  réseau  local  de  mottes  et  de
châteaux  qui  se  manifeste  par  différentes  alliances  matrimoniales,  différentes  guerres  privées,  etc.  Enfin,
même si la plupart de ces mottes ont été détruites par les agriculteurs ou par l’érosion, elles n’en demeurent
pas moins fondamentales pour comprendre certains territoires, et en particulier, les formes dans les terroirs
circulaires (Soyer, 1970).

10.1.2. Les châteaux

Ainsi,  si  le  terme  « château »  est  employé  par  commodité  dans  la  plupart  des  récits  histori-
ographiques (Cuvillier, 1998), cela vient des difficultés à maîtriser le champ lexical des termes ou expres-
sions  employés  dans  les  sources.  Par  exemple,  « castrum »,  « castellum »,  « munitio »,  « bastimentum »,
« turris » renvoient  plus au mot  français « forteresse » qu’au terme « château ».  De plus, dans les sources,
on  distingue  clairement  l’aspect  militaire  de  l’aspect  politico-administratif.  Ainsi,  ce  dernier  est  souvent
désigné  par  « firmitas »  (fermeté,  ferté)  dans  le  nord  et  « fortalitas »  ou  « fortitia »  dans  le  Midi.  Pour
compliquer davantage le problème, on rencontre souvent dans les sources le terme « oppidum » qui désig-
nait originellement une ville fortifiée à l’époque antique, mais qui, à l’époque du Moyen et du Bas Moyen
Âge, renvoyait à ce que l’on appelle aujourd’hui « château ».

Pour  résumer,  le  château était  un  lieu de  pouvoir  politique  et  administratif  qui  avait  souvent  l’ap-
parence d’une forteresse et qui contrôlait un territoire bien défini : la châtellenie. Différentes phases architec-
turales peuvent être proposées. Aux IXe  et  Xe  siècles, les forteresses étaient très proches, dans leur forme,
des camps fortifiés romains : un fossé, une palissade, et éventuellement une motte dont l’origine est plutôt
normande.  Aux  Xe  et  XIe  siècles,  les  premières  tours  de  guet  apparurent  à  l’intérieur  des  enceintes.  Elles
avaient  pour  fonction  la  surveillance  des  territoires  ruraux.  Autrement  dit,  leur  implantation  ne  se  fit  pas
n’importe où puisque leur objectif était de contrôler un territoire donné. Le choix du site était donc fonda-
mental.  D’ailleurs,  beaucoup  de  « mottes  improvisées »  furent  abandonnées  dès  le  Xe  siècle.  Aux  XIe  et
XIIe  siècles,  les  premiers  châteaux  en  pierre  apparurent.  Leur  organisation  était  simple :  une  enceinte,  et
une  haute  tour  rectangulaire  que  les  historiens  du  XIXe  siècle  appelleront  « donjon ».  Parallèlement,  les
basses-cours apparurent, et une nouvelle organisation politico-administrative vit le jour. Aux XIIIe  et XIVe

siècles,  l’organisation  des  châteaux  devint  de  plus  en  plus  complexe.  Les  tours  s’arrondirent,  les
mâchicoulis,  les  ponts-levis,  les  archères  et  les  arbalétrières  apparurent.  Toutefois,  ce  ne  fut  pas  suffisant
pour  contrer  les  canons  qui  firent  leur  apparition  en  Europe.  Ainsi,  du  XVe  au  XIXe  siècles,  le  château
perdit progressivement ses fonctions militaires pour devenir une résidence qui était le symbole du pouvoir
local.

La  Picardie  historique  et  l’Artois  offrent  un  exemple  remarquable,  puisque  les  châteaux  y  furent
très nombreux, et les territoires fortement affectés par divers redécoupages au cours des siècles.
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10.2. Les données

L’étude  de  la  distribution  spatio-temporelle  des  mottes  et  châteaux  de  la  Picardie  historique  qui
englobe le Pas-de-Calais, la Somme, l’est de l’Aisne et le nord de l’Oise (Forriez, 2005), étendue à l’Artois
(Forriez, 2007) a été réalisée à partir de différentes sources de données. Contrairement à ce que l’on pour-
rait croire, il n’est pas facile de localiser et de dater les mottes et les châteaux. Ainsi, une présentation des
sources et de la nature des données est fondamentale.

10.2.1. Les sources

Cette base de données a commencé à être construite en 2004 (Forriez, 2005).  À l’époque, la carte
réalisée a été faite sur une « projection non terrestre » ce qui est un choix qui peut quelque peu dérouter les
cartographes.  De  plus,  je  ne  disposais  pas  de  bases  de  données  telles  que  Corine  Land  Cover,  et  la  carte
réalisée est issue d’une numérisation. Les cartes utilisées comme fond sont 60 km autour d’Amiens (2004)
et  60  km  autour  de  Lille  (1996)  dont  le  système  de  projection  est  ED50.  J’y  ai  relevé  systématiquement
toutes les communes centres et tous les hameaux dépendants de ces communes, soit près de 3000 localisa-
tions.  À  partir  de  là,  j’ai  reporté  toutes  les  informations  que  l’on  connaissait  sur  le  patrimoine  castral  de
chacune d’elle.

Pour  constituer  la  base  de  données  des  mottes  et  châteaux,  aucune  recherche  en  archives  n’a  été
menée.  Un premier  dépouillement  a été  fait  à  partir  de la  base de  données du  Quid  36 000  communes de

France  qui  recense  le  patrimoine  national  et  fournit  quelques  indications  chronologiques.  Cette  étape
préliminaire  a  permis  de  répondre  à  la  question :  « où  sont-les  châteaux ? ».  En  effet,  la  répartition  des
châteaux  existant  ou  ayant  existé  est  mal  connue  pour  deux  raisons.  D’abord,  les  travaux  réalisés  par  les
historiens sont généralement des monographies ; il est donc difficile d’en faire un panorama complet, mais
surtout, les châteaux n’ont été étudiés que, dans une optique historique. Les travaux en histoire de l’art  et
en  archéologie  n’ont  pris  de  l’ampleur  qu’à  partir  de  la  seconde  moitié  du  XXe  siècle.  Des  dictionnaires
apparaissent alors (MCFAPH, 1973 ; Christ, 1978 ; Salch, 1979 ; Babelon, 1989). Une lecture systématique
de ces dictionnaires par ordre alphabétique a été réalisée. Pour chaque commune, il fut vérifié les informa-
tions de la base du Quid. La quasi-totalité des châteaux cités par celle-ci a été retrouvée, et les informations
historiques ont pu être corrigées. De plus, des châteaux oubliés ont pu être localisés.

La  base  de  données  constituée  regroupe  1413  mottes  ou  châteaux  (état  2008)  répartis  dans  les
centres d’habitations des communes et dans les différents hameaux sous la dépendance de cette commune
centre.

10.2.2. La nature des données

La  nature  des  données  est  double.  Il  s’agit  d’une  localisation  spatiale  et  d’une  localisation
temporelle.
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10.2.2.1. La localisation spatiale

Bizarrement, localiser les mottes et les châteaux est un exercice extrêmement périlleux, car mise à
part les hauts lieux touristiques, la question : « où sont ou étaient les mottes et les châteaux de la Picardie
historique ? » n’a pas de réponse claire. C’est  une des raisons pour lesquelles la  base de données initiales
n’a pas été refaite. On ne peut pas localiser très précisément ces entités spatiales. L’idéal eût été de réaliser
une  localisation  G.P.S.  de  chaque  entité.  Toutefois,  lorsque  le  château  n’existe  plus  et  n’a  pas  laissé  de
ruines visibles, comment le localiser précisément ? Aussi, les foyers d’habitats relevés lors de la numérisa-
tion des cartes semblent être un bon compromis pour fournir une localisation des châteaux avec une préci-
sion  proche  du  kilomètre.  Cette  information  est  essentielle  pour  l’analyse  fractale,  car  elle  ne  pourra  pas
avoir  une  résolution  inférieure  à  deux  kilomètres,  sans  prendre  en  considération  l’erreur  possible  due  à
l’absence  d’information.  Ceci  précisé,  il  existe  tout  de  même  des  facteurs  de  localisation.  La  plupart  du
temps, les mottes ou les châteaux s’installent le long des anciennes voies romaines et des cours d’eau ainsi
que sur les micro-reliefs (Soyer, 1970).
10.2.2.2. La localisation temporelle

Il  est  très  difficile  d’obtenir des dates fiables à 100%. La plupart du temps, d’ailleurs,  les diction-
naires de châteaux ne fournissent qu’un intervalle de temps très vague, généralement de l’ordre du siècle.
Heureusement,  la  statistique  a  développé  des  techniques  pour  ce  que  l’on  appelle  les  données  censurées
(Morgenthaler,  2007,  p.  362-365).  Elles  correspondent  au  cas  où  l’on  ne  dispose  pas  d’informations  pré-
cises, mais un intervalle de temps plus ou moins large. Son information est donc incomplète. Néanmoins,
pour réaliser des calculs, on prend généralement la valeur centrale de cet intervalle et on note généralement
une telle donnée avec un astérisque.

Cependant, il faut distinguer les données censurées des données manquantes. En effet, une donnée
manquante  correspond  à  un  vide :  on  ne  sait  rien,  si  ce  n’est  qu’il  y  devrait  y  avoir  quelque  chose  à  ce
moment-là. Une donnée censurée, par contre, est  connue de manière floue, mais au moins, on sait  qu’elle
est comprise dans un intervalle plus ou moins large.

En effet,  lorsqu’un dictionnaire informe que le château fut construit  au  XVIIIe  siècle, cela signifie
qu’il  a  été  construit  entre  1701  et  1800,  ou  encore :  Dt = 1751 ± 50 ans  (la  dernière  valeur  de  l’intervalle
étant exclue). Ceci est l’occasion de rappeler que notre calendrier chrétien débute à l’an 1, et non à l’an 0
comme certains  ont  voulu  nous  faire  croire  lors  du  soi-disant  « passage à  l’an  2000 »,  qui  fut  la  dernière
année du XXe  siècle. On peut affiner l’intervalle lorsque l’on connaît le nom du commanditaire du château
et que l’on possède ses dates. Toutefois, dans de nombreux cas, l’information est beaucoup moins précise,
par exemple, au « Moyen Âge », « à l’époque moderne », ou « à l’époque contemporaine ». Pour le Moyen
Âge,  les  premiers  châteaux  apparaissent  autour  de  l’an  mil,  son  intervalle  est  donc  Dt = 1251 ± 250 ans ;
pour  l’époque  moderne :  Dt = 1651 ± 150 ans ;  pour  l’époque  contemporaine,  on  sait  que  les  derniers
châteaux ont été construits autour de 1925, après il ne s’agit que de restaurations ou de reconstructions, ce
qui  donne  l’intervalle :  Dt = 1863 ± 62 ans.  Heureusement,  on  arrive  à  réduire  ces  intervalles  extrêmes
lorsque l’on connaît la date de destruction du château. Par exemple, s’il a été détruit en 1427, sans aucune
autre date, cela permet de conclure qu’un château a pu exister entre 1001 et 1427 ce qui donne l’intervalle
Dt = 1201 ± 200 ans. Enfin, on sait que les mottes ont été bâties majoritairement entre l’an mil et 1300, cela
fournit l’intervalle Dt = 1151 ± 150 ans.
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10.2.3. La constitution de la base de données « Catiau »

Pour mener à bien l’étude spatio-temporelle, une fiche (cf. ci-dessous) a été réalisée pour recueillir
les données relatives à l’espace géographique et à la chronologie historique de chaque motte et/ou château.
Cette fiche  sert  de  support  dans  la  construction d’un  système d’information  géographique sur  MapInfo 6.
Chaque  fiche  a  été  systématiquement  remplie  manuellement  avant  d’être  informatisée.  Ce  protocole  peut
sembler  fastidieux,  mais  comme les  dictionnaires  fournissent  généralement  des  informations  complémen-
taires, le passage par écrit reste indispensable pour conserver une trace de la réflexion initiale. Cela permet
de  trouver  les  erreurs  de  saisie.  La  base  de  données  est  donc  facilement  corrigeable.  Pour  l’heure,  on
effectuera l’analyse sur la base à l’état 2008.
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La  base  de  données  « Catiau »,  malgré  toutes  ses  imperfections,  permettra  la  construction  d’une
méthode  scalo-spatio-temporelle  pour  l’analyse  d’un  espace  géohistorique.  Avant  d’effectuer  une  telle
analyse, il faut rappeler les grandes étapes de la déconstruction de l’Empire romain et de la construction de
l’État français. Étapes dans lesquelles la Picardie et l’Artois jouent un rôle géostratégique de premier ordre.
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11
Géohistoire du nord de la France de la fin du Haut 
Moyen Âge à nos jours

Une  étude  de  l’espace-temps  en  géographie  fait  nécessairement  appel  à  des  connaissances  his-
toriques sur la construction des territoires. Depuis 2004, une étude spatio-temporelle du nord de la France
(Picardie et Nord-Pas-de-Calais) a été engagée autour de l’objet « château » (Forriez 2005 ; Forriez, 2007 ;
Forriez  et  Martin,  2008 ;  Martin  et  Forriez,  2008).  L’objectif  de  ce  chapitre  est  d’abord  de  rappeler  ce
qu’est une étude géohistorique, puis de l’appliquer à l’espace picard du Xe siècle à nos jours.

11.1. Géohistoire ou géographie historique

La  géographie  historique  correspond  à  une  « géographie  rétrospective,  qui  étudie  l’espace  à  un
moment  du  passé » (Jean-François  Staszak  in  Lévy,  Lussault,  2003,  p. 465-466).  Elle  se  définit  donc  par
son objet (Volvey, 2005, p. 72-81) : l’étude de l’évolution des frontières politiques et des limites administra-
tives.  En  France,  elle  connut  trois  grandes  écoles :  une  première  de  la  fin  du  XIXe  siècle  à  la  Première
Guerre mondiale, une seconde des années 1950 aux années 1970 (Mirot et Mirot, 1947 ; Dion, 1959) et une
troisième  de  la  fin  des  années  1980  à  nos  jours  (Pitte,  1983 ;  Sinclair,  1985 ;  Planhol,  1988 ;  Trochet,
1988 ; Miossec, 2008). Chacune de ces écoles a enrichi la discipline. De la simple école cartographique, la
géographie historique s’est transformée en une géographie humaine rétrospective, et ainsi, a établi l’historic-
ité des objets géographiques. Toutefois, elle a progressivement abandonné l’influence du milieu, si chère à
Fernand  Braudel  (1949 ;  1958).  Ce fut  d’ailleurs  lui  qui  inventa  le  terme « géohistoire ».  Si,  au  départ,  il
s’agissait  d’une  contraction  de  l’expression  « géographie  historique »,  Fernand  Braudel  fit  lui-même
évoluer le terme dans son sens actuel (1979), définit par, entre autres, Christian Grataloup (1996) et Géral-
dine Djament (2003).

La géohistoire correspond à la géographie historique à laquelle on applique des méthodes d’analyse
spatiale  (chorème,  analyse  multi-scalaire,  etc.).  Elle  se  définit  par  sa  méthode  (Volvey,  2005,  p. 72-81).
Autrement  dit,  on  peut  plus  facilement  l’enrichir  par  rapport  à  la  géographie  historique.  La  géohistoire
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répond donc à la question « pourquoi là à ce moment là ? ». Bien que l’approche chrono-chorématique de
Christian  Grataloup  (1996)  ne  sera  pas  reprise  dans  cette  thèse,  cet  auteur  a  défini  deux  notions  qui
s’avéreront  utiles :  l’événement  géographique  et  la  période  géographique.  L’événement  géographique
correspond  à  un  « changement  significatif  de  logique  spatiale » (Grataloup,  1996,  p. 198).  Autrement  dit,
tout événement historique ne peut pas être un événement géographique. On peut citer l’exemple de la limite
entre  la  Francia  Occidentalis  et  les  terres  d’empire  qui  sera  développé  plus  en  détail  dans  un  prochain
paragraphe. Cette limite fut établie par le traité de Verdun en 843 et ne fut percée qu’en 1346 avec l’annex-
ion  du  Dauphiné  à  la  Couronne de  France.  Entre  ses  deux  événements  géographiques,  on  peut  construire
une période géographique qui se définit comme une « durée historique pendant laquelle un même système
spatial se reproduit » (Grataloup, 1996, p. 199). Pour mémoire, on peut signaler l’existence d’une archéogéo-
graphie (Chouquer, 2000 ; 2008) qui applique les méthodes de l’analyse spatiale en archéologie.

Tout  au long de cette troisième partie, l’approche qui sera menée,  sera évidemment géohistorique.
La méthode retenue est celle de l’analyse multi-scalaire au sens d’Yves Lacoste et au sens fractal du terme.

11.2. Géohistoire du Nord de la France, approche multi-scalaire

Effectuer  une  analyse  multi-scalaire,  au  sens  d’Yves  Lacoste  (1976),  est  un  exercice  délicat
lorsqu’il  s’agit  d’un  contexte  géostratégique  historique.  En  opérant  quelques  simplifications  événemen-
tielles, ce paragraphe essayera de présenter les grands mouvements spatiaux et temporels de la naissance du
royaume de France, la logique de démantèlement de l’Empire carolingien et de construction du royaume de
France  étant  réellement  multi-scalaire.  Pour  ce,  les  événements  historiques  présentés  ont  été  choisis  dans
deux  références :  l’ouvrage  de  synthèse  de  Christian  Melchior-Bonnet  (1980)  et  celui  de  Georges  Duby
(1997).

11.2.1. Le Regnum francorum

Les Francs, peuplade germanique, avaient largement conquis la Gaule entre 488 et 511. À l’époque,
à la différence de l’empire romain, le territoire d’un royaume était considéré comme un patrimoine person-
nel  (Harouel  et alii,  2006).  Autrement  dit,  il  devait  être partagé entre les  fils  du roi décédé,  mais,  rapide-
ment, les Francs mirent au point un système qui permettait de diviser le Regnum francorum, tout en conser-
vant  son  unité.  En  558,  Clotaire  Ier  (511-561)  devint  le  premier  rex  trium francorum.  Cela  signifiait  que,
désormais,  le  royaume  des  Francs  était  officiellement  divisé  en  trois  « sous-royaumes » :  la  Neustrie  (au
nord  de  la  Loire,  à  l’ouest  de  la  Bretagne,  à  l’est  de  l’Escaut  et  de  la  Meuse),  l’Austrasie  (bassin  de  la
Meuse, de la Moselle et du Bas-Rhin (de l’Alsace actuelle jusqu’à l’embouchure du Rhin) et la Burgondie
(de  l’est  du  Massif  Central  aux  Alpes  italiennes  et  suisses,  du  sud  de  la  Meuse  jusqu’à  la  Durance)  qui
servirent de base pour les partages à venir. Lorsque le roi décédé laissait plus de trois enfants, on divisait à
nouveau un des trois « sous-royaumes ». En règle générale, le partage et ses modalités étaient décidés par le
roi  avant  sa  mort.  De  plus,  le  Regnum  francorum  n’était  jamais  très  longtemps  divisé :  l’un  des  frères
arrivait toujours à éliminer les autres pour devenir l’unique roi de l’ensemble du territoire. Il est important
de  noter  que  l’Aquitaine  (wisigothe),  la  Provence (ostrogothe)  et  la  Bretagne  étaient  des  entités  indépen-
dantes de ce Regnum francorum. Pour finir, quel que soit le royaume, le roi découpait son territoire en des
circonscriptions administratives appelées pagus  (ou comté) qu’il  confiait  à  des hommes de confiance :  les
comtes (Harouel et alii, 2006).
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Entre  561  et  751,  toutes  les  recompositions  territoriales  se  firent  et  se  défirent  autour  de  ces  trois
entités. La seule modification importante fut l’intégration de la Provence sous le règne de Dagobert Ier, roi
de Neustrie - Austrasie - Burgondie (628-632), puis de tous les Francs (632-639). Ce système complexe et
déroutant  fonctionna  jusque  Charles  Ier  (768-814).  Il  permit,  malgré  tout,  l’unité  du  Regnum  francorum

puisque si l’un des rois des trois royaumes venait à mourir, quelle que soit la cause de la mort, automatique-
ment, l’un des rois des deux autres royaumes récupérait son territoire, après une guerre entre eux la plupart
du  temps  (Rouche,  1970 ;  Lebecq,  1990 ;  Le  Jan,  1999,  Durliat,  2002).  C’est  une  période  extrêmement
complexe et la cartographie historique est très difficile à réaliser, car les limites sont très approximatives.

11.2.2. L'Empire d'Occident

En  751,  le  changement  de  dynastie  ne  changea  rien  à  la  situation.  L’Aquitaine  fut  conquise  par
Pépin  le  Bref  en  760,  repoussant  le  Regnum francorum  au-delà  des  Pyrénées.  En  768,  il  partagea  le  roy-
aume  entre  ses  deux  fils :  Carloman  et  Charles.  Le  partage  fut  étrange :  la  Neustrie,  l’Austrasie  et
l’Aquitaine revinrent à Carloman, ce qui revient à lui donner le contrôle des côtes atlantiques, de la Manche
(à l’exception de la Bretagne) et de la mer du Nord. Quant à Charles, il reçut la Burgondie et la Provence,
ce qui  revient  à lui  confier  les  côtes méditerranéennes.  D’un point  de vue stratégique, la  position de Car-
loman  était  nettement  meilleure  que  celle  de  Charles,  car  la  Méditerranée  venait  d’être  conquise  par  les
Arabo-musulmans,  empêchant  notamment  le  commerce  vers  le  sud  (Pirenne,  1937),  alors  que  Carloman
pouvait facilement s’ouvrir vers la Grande-Bretagne et le nord de l’Europe.

Carloman  mourut  très  vite,  en  771,  ce  qui  permit  à  Charles  de  récupérer  la  totalité  du  Regnum

francorum  qu’il  réforma  profondément.  Tout  d’abord,  il  l’étendit  vers  l’est :  il  conquit  la  Lombardie  en
774, la Bavière en 788, la Saxe en 804. Ensuite, il profita de la querelle iconoclaste dans l’Empire romain
d’Orient pour reconstituer l’Empire d’Occident en 800, après trois siècles d’absence. Enfin, il simplifia les
pagi  en en créant environ 200 sur l’ensemble de son empire. Leur cartographie est  possible. Par exemple,
pour la Picardie et le Nord-Pas-de-Calais, Robert Fossier (1968 ; 1974) en a établi la carte (Figure 91).

Toutefois, Charlemagne, en bon Franc, prépara le partage de son empire entre ses fils. Le Regnum

francorum  s’étendant  bien au-delà des trois royaumes,  il  fallait  inventer  de nouvelles limites (Arrignon et
Heuclin, 2008). Finalement, seul un fils survécut à Charles, Louis Ier le Débonnaire (814-840). Le problème
fut donc reporté à plus tard. Pendant ses 36 ans de règne, Louis Ier  dut préparer sa succession. La tâche fut
difficile :  il  eut  quatre fils  dont  un  d’un second mariage.  L’imbroglio juridique était  réellement  insoluble.
Lothaire, Louis et  Pépin ne voulurent  pas que leur  demi-frère Charles devînt  roi quel que fût le territoire.
Louis Ier allait de compromis en déception. Il fut même déposé par son aîné, Lothaire, entre 832 et 835. En
838, Pépin mourut, et en 840, ce fut le tour de son père. Aucun partage n’étant décidé, la guerre éclata entre
Lothaire, Charles et Louis. Une sombre période commença. Jamais le Regnum francorum n’avait été autant
menacé.

La  querelle  portait  sur  deux  problèmes  essentiels  (Riché,  1997).  Le  premier  était  le  traditionnel
partage entre les fils du roi ;  le  second concernait  le  titre impérial,  dont  Louis Ier  avait  hérité.  S’il  pouvait
exister  plusieurs  rois,  il  ne  pouvait  exister  qu’un  empereur  de  l’Occident.  Autrement  dit,  lequel  des  trois
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frères  allait  recevoir  la  dignité  impériale,  garant  de  l’unité  de  l’empire ?  En  840,  Louis  Ier  avait  désigné
Lothaire  pour  lui  succéder  au  titre.  Il  avait  d’ailleurs  reçu  la  couronne  et  l’épée  impériale.  Évidemment,
Charles et Louis ne furent pas en accord avec cette décision. Ils s’unirent contre leur frère. Le paroxysme
de cette lutte fut le serment de Strasbourg, le 14 février 842, qui officialisait leur objectif. En 843, Lothaire
dut céder, et le partage de Verdun finit par mettre tout le monde d’accord : Charles (le Chauve) devint roi
de  la  Francia  Occidentalis,  Louis  (le  Germanique),  roi  de  la  Francia  Orientalis  et  Lothaire,  roi  de
Lotharingie,  royaume tampon entre la Francia Occidentalis  et  la Francia Orientalis,  et  empereur  d’Occi-
dent. Dans le détail, la Lotharingie était un État qui regroupait l’Italie du Nord et la région entre l’Aar et le
Rhin et les territoires entre le Rhône, la Saône, la Meuse et l’Escaut. Ce partage fut aussi fondamental que
les  trois  royaumes  précédents,  car  toute  la  suite  de  l’histoire  des  territoires  en  Europe  occidentale  a  pour
référence ce découpage de manière plus ou moins directe. En effet, la Lotharingie devint un enjeu entre la
Francia Occidentalis et la Francia Orientalis. Les « frontières » de ces dernières restèrent à peu près fixes.
Toutefois, elle se fragmenta en cinq entités spatiales : la Basse-Lotharingie, la Haute-Lotharingie, la Basse-
Bourgogne,  la  Haute-Bourgogne  et  le  royaume  d’Italie  (du  Nord).  De  888  à  1032,  les  Basse  et  Haute
Bourgogne  formaient  un  royaume  qui  fut  absorbé  par  le  Saint  Empire  romain  germanique.  À  l’élection
d’Hugues Capet, en 987, la totalité de la Lotharingie était  sous domination de la Francia Orientalis,  et  la
titulature  impériale  lui  revint  définitivement.  Sur  la  Figure  91  est  représentée  la  limite  entre  la  France  et
l’Empire telle qu’elle fut du Xe siècle jusqu’en 1659, dans le nord de la France, ainsi que les limites approxi-
matives des comtés carolingiens.
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Figure 91. État des limites historiques connues entre 900 et 1100 d'après Robert Fossier (1968) 
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11.2.3. L'enchâtellement et le début de la construction du royaume de France (IXe- XIe siècles)

Jusqu’au traité de Verdun, l’Occident connut une extension vers l’est, accompagnée d’une profonde
réorganisation  interne.  On  était  passé  du  petit  royaume  franc  de  Clovis  au  géant  que  fut  l’empire  car-
olingien par  un processus  d’agrégation sur  de  vastes espaces,  lui-même accompagné d’une réorganisation
interne  à  grande  échelle  (création  de  nouveaux  comtés).  Le  processus  d’enchâtellement  correspond,  par
contre,  à  une  désagrégation  de  l’empire,  et  une  réorganisation  interne  autour  des  anciens  comtés  car-
olingiens.  Ce  processus  fut  observé  aussi  bien  en  Francia  Occidentalis  qu’en  Francia  Orientalis.  Toute-
fois, dans cette présentation, seul le cas de la Francia Occidentalis sera évoqué.

En  même temps  que  les  trois  frères  se  combattaient,  les  invasions  normandes  commençaient  (IXe

siècle). Les rois étant fortement occupés par leur querelle de succession, ils décidèrent de confier la défense
de leur territoire à leurs comtes ou marquis (lorsque le comté était à une « frontière » de l’ancien empire de
Charlemagne).  Il  en  résulta  la  construction  des  forteresses  le  long  des  fleuves  et  des  vieilles  routes
romaines.  Les  villes  restaurèrent  leur  enceinte.  Ainsi,  les  fonctionnaires  de  l’Empire  (les  aristocrates)
confondirent  de  plus  en  plus  leurs  charges  publiques  (honor)  qu’ils  exerçaient  avec  leurs  biens  privés
(beneficium) donnés par le roi pour s’assurer de leur service guerrier (Harouel et alii,  2006). Il est  impor-
tant  de  noter  que  le  beneficium  n’était  pas  forcément  une  terre.  Toutefois,  cela  évoluera  vers  une  terre
possédée grâce à un serment de fidélité, terre que l’on appela fief au Xe siècle.

Au IXe  siècle, il existait le serment vassalique : le futur comte ou marquis devait prêter un serment
de fidélité au roi. En échange, ce dernier lui confiait temporairement un domaine que le roi devait théorique-
ment récupérer si le serment était rompu. Avec le démantèlement et l’éclatement de l’empire, le capitulaire
de  Mersen  (847)  reproduisit  ce  schéma localement :  un  homme pouvait  jurer  un  serment  vassalique à  un
seigneur qui lui-même était fidèle au roi. Ainsi, on comptait entre 600 et 700 comtés à la fin du IXe  siècle.
L’empire  était  donc  devenu  un  système  administratif  et  politique  hyperdécentralisé  et,  dans  certains
domaines, hyperlocalisé. Seule la personne du roi maintenait la « structure étatique ». En 877, le capitulaire
de  Quierzy-sur-Oise  essaya  de  mettre  de  l’ordre  dans  les  relations  vassaliques.  En  effet,  il  était  devenu
difficile de révoquer un comte, mais ce texte allait  plus loin :  il  prévoyait  qu’en cas de décès d’un comte,
son  fils  lui  succéda provisoirement  à sa  charge.  En  ces temps troublés,  l’aspect  temporaire devint  rapide-
ment héréditaire.

Pendant la seconde moitié du IXe  siècle, la Francia Occidentalis éclata en principautés autonomes.
Celles-ci correspondaient à des regroupements de comtés. Le royaume fut alors divisé en sept : six grands
fiefs et le duché de France, terre du roi. Les tenants des six grands fiefs avaient le titre de pair de Francia

Occidentalis. Les pairies furent : (1) le duché d’Aquitaine (ou de Guyenne) ; (2) le duché de Gascogne (ou
Wasconie) ; (3) le duché de Normandie ; (4) le comté de Toulouse ; (5) le comté de Flandre ; (6) le comté
de Champagne. Chacun de ces fiefs devait  à  la Couronne une aide militaire.  Toutefois, les rois successifs
laissèrent peu à peu leurs prérogatives régaliennes aux ducs et aux comtes comme le droit de construire des
forteresses,  de  battre  monnaie,  etc.  En  911,  le  traité  de  Saint-Clair-sur-Epte  confia  la  Normandie  au  chef
normand  Rollon  qui  en  devint  duc  après  avoir  juré  fidélité  au  roi  de  Francia  Occidentalis,  Charles  le
Simple. En 987, la  Francia Occidentalis  perdit  le comté de Barcelone qui  « prit  son indépendance » pour
combattre plus efficacement le califat de Cordoue.

174   



Néanmoins, cette première fragmentation ne suffit pas. La faiblesse de la monarchie due au chassé-
croisé entre les Robertiens et les Carolingiens favorisa la création de comtés autonomes au sein même des
principautés.  Le  comté  d’Anjou,  le  comté  de  Touraine  et  le  comté  de  Blois  se  séparèrent  du  duché  de
Normandie.  Le  comté  de  Toulouse  et  le  comté  de  Comminges  se  dissocièrent  du  duché  d’Aquitaine,
Mâcon, Nevers, Auxerre, Tonnerre, Troyes et Chalon du duché de Bourgogne. Cela ne suffit toujours pas.
Les  comtés  éclatèrent  eux-mêmes.  Ainsi,  les  liens  vassaliques  descendirent  à  de  très  grandes  échelles
spatiales au sens géographique. Il n’était pas rare qu’un potentat local prît le pouvoir dans un rayon de 20 à
25  kilomètres  autour  d’un  site  donné  et  qu’il  légalisât  sa  situation  juridique  a  posteriori  par  un  serment
vassalique (Harouel  et  alii,  2006).  Comme l’écrivait  Pierre  Héliot,  « tout  aventurier  avide  de  domination,
assez  audacieux  pour  défier  à  la  fois  l’autorité  publique  et  l’ennemi,  trouvait  le  moyen  de  se  bâtir  un
château » (Héliot,  1965).  Toutefois,  d’autres auteurs,  comme Jean-Pierre  Cuvillier  (1998),  prétendent  que
ce cas était très rare. Quoi qu’il en soit, ce phénomène de construction fut appelé par Pierre Toubert (1973)
incastellamento (ou enchâtellement). Un système hiérarchique avec un nombre parfois incroyable d’intermé-
diaires s’établit entre le roi et ses seigneurs. Ce schéma correspond assez bien à la situation de la Picardie
ou  à  l’Ile-de-France  où  aucune  principauté  ne  put  s’établir.  Seuls  le  duché  de  Normandie  et  le  comté  de
Flandre continuèrent à exercer leur pouvoir au sein de cette fragmentation à très grande échelle.

À plus  petite  échelle,  entre 888  et  987,  la  monarchie devint  élective.  Les  Grands  du  royaume éli-
saient et prêtaient fidélité au roi qui était choisi parmi les Carolingiens, ou faute de mieux parmi les Rober-
tiens. Ainsi, le temps des partages devint révolu. En 987, Hugues Capet (Robertien) fut élu roi de Francia

Occidentalis, tandis qu’en Francia Orientalis, Othon Ier  fut élu roi en 936 et restaura définitivement l’em-
pire en  962.  Désormais,  les  deux  entités  étaient  bien distinctes.  Othon  dominait  la  Lotharingie  qui  devint
« terre d’empire ». Les limites de la Francia Occidentalis sont à l’ouest, l’est de la Bretagne ; à l’est, quatre
rivières  fixent  la  limite :  l’Escaut,  la  Meuse,  la  Saône  et  le  Rhône ;  au  nord,  la  mer  du  Nord ;  au  sud,  la
Méditerranée  et  le  sud  des  Pyrénées.  A l’intérieur  de  ces  limites,  le  roi  possédait  le  duché de  France  qui
comprenait :  Senlis,  Soissons,  Compiègne,  Chaumont,  Orléans,  Saint-Riquier,  Montreuil,  soit  environ
7 000 km².

Tandis  qu’en  Francia  Orientalis,  la  monarchie  restait  élective,  en  Francia  Occidentalis,  Hugues
Capet  réussit  à  transmettre  sa  couronne à  son  fils  Robert  II,  élu  et  sacré  roi  dès  987.  Chacun  de  ses  suc-
cesseurs fit sacrer son fils de son vivant. Philippe II Auguste fut le dernier de cette pratique. Après lui, non
seulement,  le  terme  de  France  apparut  clairement  et  définitivement  dans  les  sources,  mais  en  plus,  sa
descendance ne  fut  plus  contestée  à  la  tête  du  royaume.  Le  système électif  favorisa  la  transmission  de  la
couronne  à  l’aîné.  La  dynastie  capétienne  fut  définitivement  installée  à  la  mort  de  Philippe  Auguste  en
1223.

11.2.4. De la Francia Occidentalis à la France (XIe- XIIIe siècles)

L’objectif  des  rois  de  Francia  Occidentalis  était  clair :  ils  voulaient  re-centraliser  leur  pouvoir  et
leurs prérogatives. Ils vont le réaliser de différentes manières : par des mariages d’une part, par des guerres
locales d’autre part. On observe une véritable politique multiscalaire, car il leur fallait à la fois reconquérir
les  principautés,  mais  également  les  comtés  autonomes,  ainsi  que  ce  que  l’on  peut  appeler  des  micro-
seigneuries.
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L’unité spatiale de base était la châtellenie (Fourquin, 1970). Ce territoire était dirigé par un centre
appelé  château.  Pendant  cette  période,  la  structure  du  bâtiment  évolua  très  rapidement.  Au  XIe  siècle,  la
forme la plus observée était  la  motte castrale avec des structures essentiellement en bois. À partir  du XIIe

siècle,  on construisait  des tours dites  maîtresses en pierre et  le  reste de la  structure défensive en bois.  Au
XIIIe siècle, les châteaux en pierre firent massivement leur apparition. Les liens entre les sites castraux et la
défense  d’un  site  sont  évidents.  Toutefois,  il  existait  dès  cette  période des  châteaux  qui  n’étaient  pas  des
forts. Le château était avant tout un centre de pouvoir : celui du seigneur, si ce dernier possédait une garni-
son,  on  pouvait  parler  d’un  château  fort.  Ainsi,  on  peut  centrer  une  étude  géohistorique  autour  des
châteaux.  L’espace  qui  a  été  retenu  est  celui  de  la  Picardie  historique  (Amiénois,  Boulonnais,  Calaisis,
Ponthieu, Santerre, Thiérarche, Vermandois et Vimeu) (Forriez, 2005) élargie à l’Artois (Forriez, 2007). Il
est évident qu’il faut intégrer ces territoires à la construction plus vaste du royaume de France.

La reconquête de la Picardie s’effectua pendant cette période. Elle débuta timidement avec l’acquisi-
tion  de  la  seigneurie  de  Corbie  en  1074  par  Philippe  Ier  (1052-1108).  Il  faut  noter  qu’en  1066,  suite  à  la
bataille d’Hasting, Guillaume, duc de Normandie,  était  devenu roi d’Angleterre,  c’est-à-dire plus puissant
que le roi de France lui-même. En 1152, Louis VII (1137-1180) divorça d’Aliénor d’Aquitaine qui épousa
en  seconde  noce  Henri  II  Plantagenêt,  comte  d’Anjou,  comte  de  Blois,  comte  de  Touraine,  duc  de  Nor-
mandie, et par son mariage, duc d’Aquitaine. En 1154, il devint roi d’Angleterre et duc de Bretagne. On a
pu parler de « l’empire Plantagenêt » qui formait un rectangle du sud de l’Écosse jusqu’aux Pyrénées, avec
une discontinuité majeure :  la Manche.  Rappelons que l’espace picard était  coincé entre le  duché de Nor-
mandie, le duché de France et le comté de Flandre. Elle devint donc un enjeu entre trois protagonistes : le
roi de France, le roi d’Angleterre et le comte de Flandre.

Finalement,  le  roi  de  France  Philippe  II  Auguste  (1180-1223)  fut  le  grand  vainqueur.  Lorsqu’il
monta sur le trône, il possédait : Montreuil (l’unique place forte du Ponthieu), Corbie, Noyon et Beauvais.
En 1185, à la suite du traité de Boves, il obtint : le comté d’Amiens et le comté de Montdidier. Il ajouta en
1191-1192 :  le comté d’Artois, une partie du comté de Vermandois et  la seigneurie d’Hesdin (Figure 92).
En même temps, il fit entrer dans la mouvance de la Couronne, car les seigneurs devaient lui prêter fidél-
ité : le comté de Boulogne, le comté de Guînes, le comté de Saint-Pol et le comté du Ponthieu (Figure 92).
En 1202, le duché de Normandie, le comté du Maine, le comté d’Anjou, le comté de Touraine, le comté du
Poitou, le comté de Saintonge fut reconquis. On ne laissa que la Guyenne aux Anglais. Le 27 juillet 1214,
Philippe II battit une coalition financée par le roi d’Angleterre, Jean sans Peur, entre le comte de Flandre,
Ferrand de Portugal, et l’empereur, Othon IV de Brunswick, à Bouvines. Le comté de Flandre en fut durable
ment  affaibli.  Toutefois,  il  conserva  son  autonomie,  mais  entra  définitivement  dans  la  mouvance  de  la
Couronne.  D’ailleurs,  en  1304,  Philippe  IV  le  Bel  (1285-1314)  intégra  dans  le  royaume,  Lille,  Douai  et
Béthune, et en 1305, le comté de Flandre. Les limites au nord furent stabilisées. De plus, en 1285, par son
mariage avec Jeanne de Navarre, Philippe IV avait obtenu en dot la Navarre et la Champagne. À la mort de
Philippe IV, le domaine du roi recouvre largement le royaume. Cependant, le roi d’Angleterre n’avait  pas
dit son dernier mot.

En  1254,  Éléonore  de  Castille  apporta  en  dot  le  comté  de  Ponthieu  au  futur  roi  d’Angleterre,
Édouard Ier Plantagenêt (1272-1307). De l’immense empire Plantagenêt, il ne resta plus que deux confettis :
la Guyenne et le Ponthieu (Figure 92), deux confettis qui furent pourtant suffisant pour s'opposer aux rois
de France pendant près d’un siècle.
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Enfin,  il  faut  préciser  que  la  (re)conquête  des  rois  de  France  ne  se  limita  pas  à  regrouper  les  dif-
férentes  principautés  territoriales.  Le  roi  imposa  son  pouvoir  au  niveau  local.  Une  nouvelle  fois,  ce  fut
Philippe II qui lança le mouvement, pour ce, il utilisa deux grands moyens. Tout d’abord, il se munit d’un
« service  déconcentré » représenté  par  le  prévôt,  le  bailli  ou  le  sénéchal  (qui  furent  remplacés  à  l’époque
moderne  par  les  gouverneurs  et  les  intendants).  À  côté  du  pouvoir  comtal,  il  existe  désormais  le  pouvoir
royal.  Le  deuxième  moyen  fut  octroi  d’une  myriade  de  chartes  communales  qui  permettaient  aux  com-
munes de s’affranchir largement de l’autorité du comte ou du duc dont elles dépendaient. Cela permit, entre
autres, de limiter les pouvoirs réels des comtes et des ducs aux territoires ruraux. Ces successeurs menèrent
la même politique jusqu’à la fin du XVe siècle.
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Figure 92. État des limites historiques connues entre 1100 et 1300 d'après Robert Fossier (1968) 
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11.2.5. Le Royaume de France (XIIIe- XVe siècles)

Entre 1314 et 1328, les rois de France eurent des problèmes de descendances. Il a fallu improviser
des règles de succession. En 1316, Louis X le Hutin mourut. Sa femme était enceinte. Il fut décidé d’atten-
dre la naissance de cet enfant. S’il s’agissait d’un homme, ce serait le futur roi. Ce fut un homme, que l’on
prénomma  Jean,  qui  ne  vécut  que  cinq  jours  du  15  au  20  novembre  1316.  Qui  pouvait  prétendre  à  la
Couronne ? Les juristes se tournèrent  vers  le  frère du roi :  Philippe V (1316-1322) qui  mourut à son tour
sans  descendant,  mais  il  restait  un  frère.  Ainsi,  Charles  IV  (1322-1328)  monta  sur  le  trône.  Ce  dernier
mourut sans enfant. La logique eût voulu que la sœur survivante, Isabelle de France, héritât de la Couronne,
mais elle était l’épouse du roi d’Angleterre, Édouard II (1307-1327), ce qui revenait à confier la Couronne
de  France,  à  son  ennemi  juré  que  représentait  le  roi  d’Angleterre,  Édouard  III  (1327-1377).  Il  fut  donc
décidé de confier la Couronne de France au cousin du roi Philippe VI de Valois (1328-1350), au nom de la
loi salique (Clovis) qui interdisait les femmes d’hériter des terres, donc du domaine royal. De plus, Philippe
fut choisi, car il possédait un successeur potentiel.

En  1328,  tout  s’était  bien  passé.  Édouard  III  rendit  hommage  à  Philippe  VI  en  la  cathédrale
d’Amiens (1329), proche de son fief du Ponthieu. Cependant, en 1336, Édouard III fit valoir officiellement
ses droits à la Couronne de France. Immédiatement, Philippe VI répliqua en lui confisquant le Ponthieu. La
guerre commença et tourna rapidement à l’avantage de l’Angleterre. Par exemple, à la suite de la bataille de
Crécy (1346),  Édouard  III  prit  Calais  en  1347,  mais  la  situation  n’était  pas  catastrophique  pour  le  roi  de
France.  D’ailleurs,  Philippe  VI fit  sa  première acquisition significative  au détriment  de  l’empire en s’em-
parant du Dauphiné en 1346. De plus, il acquit définitivement la Champagne, la Brie et Montpellier. Ce ne
fut  qu’à  la  bataille  de  Poitiers  (1356)  que  l’Angleterre  écrasa  « l’armée  française ».  Jean  II  le  Bon
(1350-1364)  y  fut  fait  prisonnier,  et  par  le  traité  de  Brétigny  (1360),  Édouard  III  récupéra  le  Ponthieu
(Figure 93), le duché d’Aquitaine en entier et conquit le Calaisis (Figure 93).

En 1364, Charles V le Sage (1364-1380) devint roi à la place de son père, mort dans sa prison de
Londres.  Il  créa  rapidement  une  véritable  « armée  française »  de  métier  à  la  tête  de  laquelle  il  plaça  Du
Guesclin.  Rapidement,  le  Ponthieu  fut  repris  (en  1369).  À  sa  mort,  Charles  V  avait  laissé  aux  Anglais :
Calais, Bordeaux, Cherbourg,  Brest et  Bayonne.  La guerre dite de Cent ans en serait  sans doute restée là.
Malheureusement, le sort voulut que Charles VI le Bien-Aimé (1380-1422) devînt fou au cours de son long
règne  favorisant  les  intrigues  de  la  part  des  Grands,  et  particulièrement  du  roi  d’Angleterre  et  du  duc  du
Bourgogne.
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Figure 93. État des limites historiques connues entre 1300 et 1400 d'après Jean Kerheve (1998) 

En 1415, l’armée française fut défaite à Azincourt. Le traité de Troyes (1420) divisa le royaume de
France  en  deux :  du  nord  de  la  Loire  à  la  Picardie,  on  avait  les  territoires  du  roi  d’Angleterre,  Henri  V
(1413-1422) ;  au  sud de la Loire, le  royaume de France de Charles VI,  puis  Charles VII (1422-1461). Ce
traité reconnaissait comme unique héritier du royaume de France, Henri V à la mort de Charles VI. Les rois
d’Angleterre devinrent rois de France, titre qu’ils conservèrent jusqu’en 1802 (paix d’Amiens). Entre 1417
et 1430, les Anglais réinvestirent le Ponthieu ; le Calaisis étant resté anglais (Figure 94).
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Parallèlement,  les  Bourguignons  profitèrent  de  la  faiblesse  de  Charles  VI  et  de  leur  position
stratégique entre  le  royaume de  France  et  l’empire  pour  agrandir  leur  territoire.  Tout  commença  en  1369
lorsque le duc de Bourgogne, Philippe le Hardi (1364-1404), épousa Marguerite de Flandre qui lui apporta
en dot l’Artois, la Flandre, le comté de Saint-Pol, le comté de Montreuil et le comté d’Hesdin. Il possédait
déjà le duché de Bourgogne (France) et le comté de Bourgogne (empire) et il avait donné en apanage à ses
fils le comté de Nevers et  celui de Rethel.  On considère la paix de Tournai (1385) comme l’acte de nais-
sance de l’État bourguignon (Schnerb, 1999).

En 1428, Jeanne d’Arc rencontra Charles VII à Chinon. Elle le convainquit de se faire sacrer roi de
France à Reims. Les hostilités anglo-françaises reprirent. Alors que Philippe le Bon (1419-1467) avait pris
le  parti  des  Anglais  en  1420.  Il  se  rangea  rapidement  au  côté  de  Charles  VII  et  l’aida  à  reconquérir  son
royaume. En 1435, le traité d’Arras donna les villes de la Somme et le Ponthieu à Philippe le Bon (Figure
94) qu’il  unifia sous le  nom de Picardie.  Les Bourguignons possédaient  alors  toute la  partie  nord du roy-
aume  de  France,  à  laquelle  il  fallait  ajouter :  les  possessions  de  Philippe  le  Hardi  ainsi  que  le  duché  de
Luxembourg (empire), Limbourg (empire), le comté de Hollande (empire), le comté de Namur (empire), le
comté du Hainaut (empire) et le comté de Boulogne (France). Les Bourguignons étaient en train de recon-
struire,  de  manière  consciente  ou  inconsciente,  la  Lotharingie  historique  qui  avait  disparu  pendant  cinq
siècles.

Parallèlement, en 1449, la France reprit la Normandie. Les Anglais ne possédaient plus que Calais
dès 1453. Louis XI (1467-1483) poursuivit l’œuvre de son père en gagnant sur l’empire : la Provence et en
récupérant  le  Maine  en  1481.  Il  dut  surtout  combattre  la  puissance  bourguignonne.  Louis  XI  racheta  les
villes  de  la  Somme à  Philippe  le  Bon  en  1463,  mais  il  les  lui  rendit  en  1465  par  le  traité  de  Conflans  à
cause  du  fils  de  Philippe,  Charles.  Les  Bourguignons  devinrent  une  véritable  menace  avec  Charles  le
Téméraire (1467-1477). En 1472, ce dernier envahit le royaume par le sud de la Somme. Il fut stoppé par
Jeanne Hachette à Beauvais. Toutefois, il conquit  le comté d’Eu. En janvier 1477, il  mourut lors du siège
de Nancy.  Immédiatement,  Louis XI récupéra définitivement  le  duché de Bourgogne et  provisoirement  le
comté  de  Bourgogne  (Franche-Comté),  perdu  par  Charles  VIII  (1483-1498).  En  1482,  lors  de  la  paix
d’Arras,  il  récupéra  de  manière  définitive  pour  la  France,  la  Picardie  et  le  Boulonnais.  L’Artois  entra  un
temps  dans  la  mouvance  française,  perdu  par  Charles  VIII.  Toutefois,  Charles  VIII  épousa  Anne  de  Bre-
tagne,  ce  qui  permit  d’intégrer  le  duché dans  le  royaume de  France.  La  mort  prématurée  de  Charles  VIII
obligea  son  oncle  et  successeur,  Louis  XII,  d’épouser  Anne  de  Bretagne,  faisant  entrer  définitivement  la
Bretagne dans le royaume de France. Désormais, le royaume est pratiquement un espace continu toutes les
principautés,  à  l’exception  du  comté  de  Flandres,  furent  intégrée.  Ils  ne  restent  que  quelques  enclaves
comme Calais ou le comtat Venaissin. Il peut s’ouvrir à la « reconquête de la Lotharingie ».
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Figure 94. État des limites historiques connues entre 1400 et 1500 d'après Jean Kerheve (1998) 

À l’aube du XVIe  siècle, la Picardie et  le Boulonnais furent profondément ancrés dans le royaume
de  France.  La  menace  anglaise  n’existait  plus.  Désormais,  il  fallait  fixer  la  limite  entre  l’empire  et  la
France. Il faut noter que les châteaux avaient changé de fonction au cours de la fin du Moyen Âge, l’appari-
tion des premiers canons au XVe  siècle rendit  inutile les forts  dans les campagnes (Contamine, 1980). Ce
qui fait qu’à l’aube du XVIe siècle, les châteaux pouvaient être encore des lieux de pouvoirs, mais difficile-
ment des forts. Leur architecture en sera profondément modifiée (Mesqui, 1997; Babelon, 1989).
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11.2.6. Le Royaume de France (XVe- XVIIe siècles)

La frontière au nord fut fixée en deux temps. D’abord, en 1558, Henri II (1547-1559) reprit Calais
aux  Anglais  (Figure  95).  Le  3  avril  1559,  la  paix  du  Cateau-Cambrésis  agrandit  le  territoire  français  des
évêchés de Toul, de Metz et de Verdun. La lutte contre l’empire avait commencé. Le deuxième temps fut la
Guerre  de  Trente  ans  (1618-1648)  et  les  campagnes  de  Louis  XIV.  En  1648,  les  traités  de  Westphalie
donnèrent à la France l’Alsace actuelle. La paix des Pyrénées en 1659 entre la France et l’Espagne intégra
définitivement  l’Artois  (à  l’exception  de  Saint-Omer  et  Aire-sur-la-Lys),  ainsi  que  quelques  territoires  du
Luxembourg  et  du  Hainaut,  Montmédy,  Thionville  et  le  Roussillon.  En  1668,  le  traité  d’Aix-la-Chapelle
donna  la  Flandre  du  Sud  qui  fixa  la  frontière  franco-belge  actuelle.  En  1678,  au  traité  de  Nimègue,  la
France acquit définitivement la Franche-Comté, le Cambrésis, le Valenciennois et Maubeuge.
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Figure 95. État des limites historiques connues entre 1500 et 1700 d'après Georges Duby (1987) 
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11.2.7. Du Royaume de France à la France républicaine (XVIIIesiècle à nos jours)

À partir du XVIIIe siècle, la frontière au nord et au sud de la France était fixée. Au sud, les Pyrénées
marquaient la frontière entre la France et l’Espagne. Au nord, la frontière fut tracée à la suite de nombreux
compromis (Figure 96). Elle fut définitivement fixée lors de la création de la Belgique en 1830, état tampon
entre  les  Pays-Bas,  les  terres  d’empire  et  la  France  (Nordman,  1977).  Il  restait  à  trancher  la  frontière  de
l’est. En 1766, Louis XV annexa la Lorraine, et, en 1768, acheta la Corse aux Génois. Un statu quo  sem-
blait  avoir  été  trouvé.  Dans  le  sud-est,  le  Comtat  Venaissin  fut  annexé  en  1791,  au  détriment  du  pape.
Enfin, la frontière franco-italienne fut acquise en 1860 par l’annexion de la Savoie et du comté de Nice par
la France. De plus, l’unité italienne a repoussée au-delà de la Suisse, de la Lombardie et de la Vénétie les
terres d’empire. Par contre, pour fixer la frontière de la Lorraine actuelle à l’Alsace actuelle, il  fallut trois
guerres extrêmement sanglantes entre la France et l’Allemagne en 1870-1871, 1914-1918 et 1939-1945.
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Figure 96. État des limites historiques connues entre 1700 à nos jours

11.2.8. Limites et frontières en géohistoire

Ce paragraphe est une application du chapitre 3. Les concepts de limite et de discontinuité y ont été
définis. Avant de revenir sur l’interprétation des données chronologiques précédentes, il faut revenir sur la
définition  polysémique  d’une  frontière  entre  plusieurs  territoires  à  travers  l’exemple  de  la  Picardie  his-
torique, l’Artois et la Flandre.
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Au XXIe  siècle, en droit international public, une frontière correspond à la limite de la souveraineté
entre un Etat et ses voisins. Géométriquement, cette définition est caractérisée par le tracé d’une courbe en
coordonnées  curvilignes.  Cette  approche linéaire  de  la  frontière  est  très  récente ;  elle  va  de  pair  avec  l’a-
vancée  qu’a  connu  la  cartographie  au  XVIIIe  siècle.  C’est  d’ailleurs  la  définition  retenue  par  Frédéric
Ratzel (1897) et Paul Vidal de la Blache (1917). Elle se retrouve au cœur de la première école de géogra-
phie historique (Ciatonni, 2005). L’approche de l’objet « frontière » était alors essentiellement temporelle.
Elle répondait à la question : « comment en est-on arrivé là ? ». La frontière était alors analysée comme une
véritable  limite,  un  finistère.  Au-delà  de  la  frontière  se  trouvait  un  ailleurs,  ce  qui  marque  bien  la  dif-
férence.  Géographiquement,  la  frontière engendre donc une identité  particulière :  un français  n’est  pas un
allemand, par exemple. Il s’agit donc aussi d’une discontinuité essentielle (Renard, 2002).

À  partir  de  là,  la  définition  géographique  de  la  frontière  correspond  à  une  approche  spatiale  qui
apporta  un  renouveau  non  négligeable  à  l’intérêt  scientifique  de  l’objet  des  années  1970  à  nos  jours
(Medina-Nicolas,  2004).  La  grande avancée  fut  l’adoption  d’une définition  multi-scalaire  au  sens  d’Yves
Lacoste (1976) d’une part, mais également, par la (re)découverte des travaux mathématiques de Lewis Fry
Richardson  (1961)  sur  les  frontières  interétatiques  montrant  qu’elles  correspondaient  à  des  objets  fractals
(Mandelbrot, 1975 ; 1977 ; 1982), d’autre part. La définition du concept au sens géographique de frontière
peut se résumer en trois notions : souveraineté, limite et discontinuité, objet multi-scalaire.

Par ailleurs, l’approche multi-scalaire s’est  beaucoup développée, tant il  est  vrai que le concept au
sens de ligne de séparation peut être applicable à différentes échelles géographiques (Renard, 2002). Toute-
fois,  l’étude  des  frontières  dans  l’espace  des  échelles  au  sens  fractal  du  terme  a  été  très  peu  étudiée,  et
généralement, les études correspondent à une estimation de la dimension fractale. Quoi qu’il en soit, l’utili-
sation  du  concept  frontière  en  géohistoire  doit  être  systématiquement  démontré  pour  éviter  les  anachro-
nismes ou les interprétations idéologiques, fréquentes avant les années 1970.
11.2.8.1. La limite entre la Francia Occidentalis et la Lotharingie

La  limite  entre  la  Francia  Occidentalis  et  la  Lotharingie  fut  fixée  en  843,  mais  il  ne  peut  s’agir
d’une frontière au sens géographique du terme. Certes, la notion de limite territoriale entre deux royaumes
existait depuis longtemps, mais la notion de souveraineté et la notion d’identité propre aux deux ensembles
que cette limite séparait, ne pouvaient se justifier, d’une part parce que le concept juridique de souveraineté
n’avait pas encore été inventé, et d’autre part, parce que le tracé n’était qu’un compromis. En effet, il était
coutumier chez les Francs de partitionner et de réunir au bout de quelques années les territoires dissociés.
Par exemple, Charles III le Simple reconquit la partie nord de la Lotharingie entre 911 et 923.

Toutefois,  cette  limite  s’installa  dans  la  durée,  et  à  partir  de  987,  les  choses  étaient  différentes.
Hugues  Capet  et  ses  successeurs  renoncèrent  à  la  partie  centrale  de  l’ancien  empire  de  Charlemagne.  Le
système féodal était avancé. De plus, il faut préciser que le critère essentiel qui servit à la construction des
États-nations  au  XIXe  siècle,  la  langue  nationale,  n’existait  pas.  Ce  qui  pouvait  créer  une  identité  partic-
ulière était le serment vassilique. Cependant, les habitants des seigneuries frontalières ne devaient vraisem-
blablement  pas  savoir  s’ils  dépendaient  du  roi  des  Francs (puis  de  France)  ou  de  l’empereur  germanique.
Par contre, il est probable qu’ils devaient savoir de quel seigneur et de quelle paroisse ils dépendaient, voire
de  quel  comté,  ne  serait-ce  que  pour  payer  leurs  impôts.  Dans  ce  cadre,  il  ne  manquait  plus  que  la  sou-
veraineté que le roi acquit progressivement au cours du XIIe siècle.

Si  on  s’intéresse  aux  petites  seigneuries  ou  aux  comtés,  celles-ci  pouvaient  correspondre  à  de
véritables  discontinuités,  tout  dépend  du  groupe social  que  l’on  étudie.  Pour  les  seigneurs  ou  les  comtes,
cette limite était fondamentale, tandis que, pour leur population, la limite majeure est celle de leur village.
On a  ainsi  une véritable  imbrication  spatiale  en  fonction  du  rang de  l’individu.  De ce point  de  vue,  cette
imbrication  est  le  support  de  la  hiérarchie  féodale ;  elle  correspond  bien  à  une  analyse  multi-scalaire  au
sens d’Yves Lacoste (1976).
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Cependant, s’il est clair que la limite entre la Francia Occidentalis et la Lotharingie est fondamen-
tale, car elle est le support de la politique intérieure des Capétiens, elle ne semble être qu’une discontinuité
que pour le roi, ses princes et leurs cours respectives. D’ailleurs, la Flandre avait, à plusieurs reprises, joué
sur  cette  limite  pour  conserver  son  autonomie.  En  1071,  par  exemple,  elle  devint  réellement  une  entité
autonome. Elle ne dépendait  ni  de l’empire,  ni  de la  Francia Occidentalis.  Il  fallut  attendre la  bataille  de
Bouvines (1214), pour la faire de nouveau rentrer dans la mouvance française. De plus, il faut préciser que
le  comté  était  coupé  par  la  limite :  neuf  dixièmes  de  la  Flandre  était  en  Francia  Occidentalis  contre  un
dixième en Lotharingie. Cependant, les autres princes territoriaux s’en servirent peu.

Entre  1066  et  1453,  la  limite  essentielle  était  curieusement  celle  de  la  Manche.  En  effet,  depuis
1066, l’Angleterre était  devenue « un morceau de Francia Occidentalis », puisque son roi devait  prêter le
serment  vassilique  au  roi  des  Francs  (puis  de  France).  En  1154,  par  exemple,  le  royaume  d’Angleterre
possédait les trois quarts du territoire de son suzerain. Les Capétiens eurent fort à faire pour repousser les
terres anglaises sur leur île. Cependant, la discontinuité entre les deux royaumes n’était réellement ressentie
que par  les  Grands. Dans ce cas,  on retrouve une expression multi-scalaire de la  discontinuité territoriale,
tout comme la limite avec les terres d’empire.

Au  XIVe  siècle,  l’idée  de  souveraineté  était  bien  ancrée :  « le  roi  de  France  est  souverain  en  son
royaume ». L’idée de frontière est désormais possible, mais sans la notion « d’Etat » qui n’apparut qu’aux
XVIe - XVIIe siècles. Les frontières du royaume furent fixées : les côtes de la Manche et de l’Atlantique, les
Pyrénées  du  sud  (le  comté  de  Barcelone)  s’étant  tourné  vers  l’Aragon,  et  la  limite  entre  la  France  et  les
terres d’empire. Il faut ajouter que la première (re)conquête des terres lotharingiennes commença dès 1346
avec le Dauphiné.

Toutefois,  ce  ne  fut  qu’au  XVe  siècle  que  la  limite  entre  la  France  et  les  terres  d’empire  devint
essentielle.  En  effet,  les  Ducs  de  Bourgogne,  fort  de  leurs  immenses  possessions  territoriales,  de  part  et
d’autre de la frontière, essayèrent de refonder autour d’elle une sorte de « nouvelle Lotharingie » (Schnerb,
1999).  Ils  furent  donc parmi  les  premiers à  essayer  de  créer  une entité  spatiale  originale  en  se servant  de
l’identité  particulière  des  territoires  frontaliers.  La  mort  prématurée  de  Charles  le  Téméraire  mit  fin  à  ce
projet.

Entre le XVIe  et le XXe  siècle, la construction de la frontière entre la France et les terres d’empire
correspond de plus en plus à la définition géographique moderne du concept de « frontière ». En effet, elle
devint un enjeu essentiel entre ces deux entités, et ce, à toutes les échelles.
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11.2.8.2. Les subdivisions administratives

Les subdivisions administratives présentées au cours de cette partie doivent être comprises comme
étant  approximatives.  On  connaît  relativement  mal  les  limites  des  pagi  carolingiens  et  des  comtés  et
seigneuries (Feuchière, 1954). En effet, dans la plupart des cas, on peut connaître une liste de possessions
entrant dans tel  ou tel  fief,  mais les limites réelles demeurent  floues. Le problème fut formulé par Lucien
Febvre :  « étant  donné  une  certaine  région  en  France  (il  est  bien  entendu,  d’ailleurs,  que  le  problème  se
pose  également  hors  de  France),  les  diverses  circonscriptions  territoriales  qui  s’y  sont  succédé  ont-elles
entretenu des rapports les unes avec les autres, et quels rapports ? Y a-t-il, par exemple, des rapports autres
que des rapports de succession chronologique, y a-t-il des rapports de filiations entre le pagus mérovingien
et, en deçà, le pagus gallo-romain, au-delà les circonscriptions carolingiennes, puis les seigneuries, puis les
châtellenies  et  les  bailliages,  et  ainsi  de  suite  jusqu’aux  actuelles  circonscriptions,  cantons,  arrondisse-
ments,  etc. ? »  (Febvre,  1947).  De  plus,  beaucoup  de  limites  sont  anachroniques.  Ainsi,  Lucien  Febvre
souligne que « en réalité, ces admirables pointillés, doublés de traits de couleurs, qui donnent aux cartes de
pagi tant d’apparente précision, ne sont que trompe-l’œil. Elles reproduisent des limites de circonscription
beaucoup plus récentes que les pagi, et c’est  par un évident anachronisme qu’on les projette telles quelles
dans ce passé qu’aucun document précis ne vient éclairer dans le détail » (Lebvre, 1947). Ainsi, les Figures
91, 92, 93, 94, et 95 présentent donc sous forme de tracé linéaire des limites qui, en réalité, sont incertaines.
Seule  la  Figure  96  sur  laquelle  est  représentée  le  tracé  de  la  frontière  franco-belge  actuelle  possède  une
limite précise.

Autrement dit,  il  est  hors de question d’étudier l’évolution de la fractalité des limites de tel  ou tel
comté. Il faut utiliser un autre indicateur, peu sensible à la mouvance de celles-ci. Celui qui a été retenu est
évidemment la répartition des châteaux, expression du pouvoir local jusqu’au début du XXe siècle.

Dans  cette  partie,  la  périodisation  géographique  a  été  réalisée  en  fonction  des  acquisitions  et  des
pertes territoriales des rois de Francia Occidentalis (puis de France) dans la zone étude choisie. De 987 à
1191, la plupart des territoires sont dans l’orbite du Royaume, mais conservent une certaine autonomie. De
1191 à 1558, l’existence des fiefs anglais (Ponthieu 1258-1336 - Ponthieu et Calaisis 1347-1429 - Calaisis
1429-1558) perturbe l’intégration de la Picardie et  de  l’Artois  dans le  Royaume de France.  D’ailleurs,  en
1558,  seule  la  Picardie  entra  définitivement  dans  le  Royaume.  Deux  autres  périodes  sont  notables :
1558-1678  et  1678  à  nos  jours.  Toutefois,  cette  périodisation  géographique  des  territoires  ne  correspond
pas exactement à celle des châteaux.
11.2.8.3. Note sur le trait de côte

Le trait de côte tracé sur l’ensemble des cartes (Figure 91, Figure 92, Figure 93, Figure 94, Figure
95 et Figure 96) est  le trait  actuel.  Il  est  à  noter qu’il  a fortement évolué au cours de la période. Ainsi,  le
triangle Calais, Saint-Omer et Dunkerque était formé d’un ensemble d’îles. Ainsi, Bergues (rendue célèbre
par  le  film  de  Dany  Boon)  ou  Saint-Omer  étaient  des  ports  et  des  places  fortes  hautement  stratégiques
(Figure  97).  Pendant  l’optimum  médiéval,  le  retrait  des  eaux  marines  et  l’assèchement  des  marais
aboutirent au trait de côte actuel entre le XIe  et le XIIIe  siècle. On remarque également un recul du trait de
côte entre Boulogne-sur-Mer et Saint-Valéry-sur-Somme.
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Figure 97. Carte représentant la Flandre vers l'an 900

Cette carte est extraite de la plaquette « L'ancienne Flandre de la préhistoire à nos jours » de Jean-Marie Regnault, président de la section lilloise de
la Fédération française de l'union touristique Les amis de la  nature  [http://utan.lille.free.fr/Flandre_Historique.pdf].  Cette représentation n'est  donc
qu'indicative.

11.3. Choix des limites temporelles

Le  prochain  chapitre  aura  pour  objectif  de  quantifier  l’articulation  multi-échelle  dans  l’espace
picard  et  artésien  à  partir  de  la  fenêtre  présentée  tout  au  long  de  la  partie  précédente.  Il  faut  préciser  les
périodes  géographiques  de  la  répartition  des  châteaux  d’après  les  informations  historiques  présentées
précédemment. L’information sur les  châteaux étant très lacunaire, il  faut préférer  une analyse séculaire à
une analyse annuelle.  Pour construire  la  première période,  le  plus simple est  de considérer  que les  cadres
géographiques carolingiens perdurent jusqu’au XIIe siècle. La première période va donc de 900 et 1100. Ce
découpage est fortement discutable dans la mesure où, sur cette carte, les limites de la seigneurie de Corbie
ne sont  pas  tracées.  Toutefois,  cette  dernière  n’eut  qu’une cinquantaine  d’années  d’existence,  en tant  que
territoire original.

La  seconde  période  va  de  1100  et  1300.  Elle  correspond  à  l’intégration  des  petites  seigneuries
picardes dans le royaume de France. La troisième période va de 1300 à 1400. Elle correspond l’intégration
du  Ponthieu  et  du  Calaisis  dans  le  royaume d’Angleterre.  La  quatrième  période  va  de  1400  à  1500.  Elle
correspond à la construction de l’État bourguignon dans l’espace picard et artésien. La cinquième période
va de 1500 à 1700. Elle correspond à l’intégration définitive de la Picardie historique (Amiénois, Ponthieu,
Boulonnais,  Calaisis)  dans  le  royaume.  La  sixième  période  va  de  1700  à  nos  jours.  Elle  correspond  à  la
construction de la frontière franco-belge moderne.
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Dans  chacune  des  limites  connues  pour  chacune  de  ces  périodes,  une  dimension  fractale  sera
calculée pour essayer de mesurer la cohérence territoriale de ces différentes entités, mais avant, une analyse
générale atemporelle de la répartition des châteaux circoncise à l’espace français actuel du nord-ouest de la
France sera menée dans le but d’avoir une base de comparaison. En effet, l’information à petite échelle sur
la  répartition  des  châteaux  pour  la  France  est  inaccessible  pour  une  raison  simple :  les  cartographies  des
sites castraux sont rares, très ponctuelles et très partielles. Si l’on prend l’intégralité de l’information sur la
fenêtre  spatiale  et  atemporelle,  on  construit  une  dimension  fractale  de  référence  qui,  en  principe,  devrait
être  indépassable,  puisque l’on  considère  l’ensemble  des  châteaux  quelle  que soit  la  période de  construc-
tion.  Il  ne  peut  pas  y  en  avoir  plus,  sauf  méconnaissance  historique  de  certains  complexes  aujourd’hui
totalement disparus.
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12
La réflexion sur l'analyse spatio-temporelle à partir 
du cas bovois

L’avantage de la base de données « Catiau », malgré toutes ses imperfections, est qu’elle permet de
mener  une  analyse  diachronique  sur  le  long  terme.  Dans  ce  chapitre,  seul  le  cas  de  Boves  (80),  village
proche d’Amiens (80), sera traité.

12.1. Le temps et la loi d'évolution de Laurent Nottale (2000)

Les données historiques  et/ou archéologiques  étant  incertaines,  la  connaissance de  la date  de con-
struction, ou de destruction, d’une motte, ou d’un château, peut varier de l’année près au siècle près. Il est
donc plus  simple de  cartographier  le  nuage des mottes  et  châteaux que d’établir  la  répartition temporelle.
Pour  y  remédier,  ce  temps  historique  peut  être  modélisé  par  l’intermédiaire  de  la  loi  chronologique  log-
périodique d’évolution de Laurent Nottale (et alii, 2000 ; 2002), à savoir :

Tn = TC + (T0 - TC)g-n où g = k
1

D

avec  k  entier  si  le  nombre  d’embranchements  (choix  potentiels  à  chaque  bifurcation  du  système)  reste
constant à chaque étape et si D est une dimension fractale valant 2 (Mandelbrot, 1977) qui relie le rapport
d’échelle au nombre d’embranchements, et T0 l’origine de l’évolution considérée déterminée par un événe-
ment arbitrairement choisi à n = 0.

Il s’agit d’une loi phénoménologique puisqu’elle est restreinte à des phénomènes particuliers. Avant
d’appliquer  l’équation,  il  faut  caler  les  données  avec  trois  dates.  Ce  calage  consiste  à  calculer  g  et  TC  à
partir des premières dates. Il faut préciser que

Tn+ 1 = 
TCHg - 1L+ Tn

g
 et Tn- 1 = TC + g(Tn - TC)

Autrement  dit,  la  série  chronologique  est  déterminée  par  l’origine  spatio-temporelle  que  l’on  a
choisie. On calcule ensuite g et TC entre n et n + 1 de la manière suivante :

TC = 
gT

n+ 1
- Tn

g - 1
 = 

Tn+ 1
2-Tn Tn+ 2

2 Tn+ 1 - Tn - Tn+ 2

g = 
Tn+ 1-Tn

Tn+ 2-Tn+ 1
 = 

Tn - TC

Tn+ 1 - TC

Ce type d’équation n’est pas exceptionnel en soi. Elle porte le nom de convergence géométrique. Ce
point présente la particularité d’être super stable. Il faut toutefois insister sur le fait que le cœur de cette loi
est le rapport g. Celui-ci est un rapport d’intervalles constant qui caractérise une invariance d’échelle.
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Il  faut  également  préciser  que  les  lois  log-périodiques  sont  des  lois  périodiques  dans  un  espace
logarithmique. Elles peuvent correspondre à  des accélérations, à des décélérations ou à des lois périodiques
normales (dans le cas où g = 1).

Dans  la  pratique,  il  faut  ajuster  numériquement  g  et  TC  par  une  méthode  d’estimation  statistique
comme  celle  des  moindres  carrés.  On  peut  utiliser  aussi  comme  estimateur  statistique  la  variable  t  de
Student dans un tirage de Monte-Carlo (Figure 99).

12.1.1. L'archétype temporel de Boves

Aujourd’hui, l’exemple de Boves sert toujours d’archétype. Le site archéologique de Boves se situe
à  huit  kilomètres  au  sud-est  d’Amiens.  Il  est  essentiellement  d’époque  médiévale  et  il  fait  l’objet  d’une
étude très  approfondie  depuis  treize  ans  (Racinet,  1996-2009).  C’est  un  complexe castral  constitué  d’une
motte, d’un château et de bâtiments d’habitation et/ou ecclésiastiques (Racinet et Drouin, 2002 ; Racinet et
Schwerdroffer, 2004).

C’est  bien  sûr  grâce  à  tous  les  travaux  existant  sur  ce  site  que  cette  étude  a  pu  être  possible  et
réalisée. Ainsi, dix « dates remarquables » ont été retenues pour construire le modèle. Les quatre premières
ont  été  choisies  en  fonction  des  données  archéologiques.  920  et  960  correspondent  aux  deux  premières
structures en bois construites sur la motte ; on peut estimer la barre d’erreur à plus ou moins 25 ans. Vers
1025,  les  occupants ont  mis en  place une structure  mi-pierre,  mi-bois ;  la  barre  d’erreur  est  également  de
plus  ou  moins  25  ans.  Vers  1140,  ils  commencent  à  bâtir  le  premier  château  à  proprement  dit,  avec  une
barre  d’erreur  de  plus  ou  moins  20  ans.  Par  l’étude  d’Olivier  Leblanc  (2003),  on  sait  que  la  motte  est
ensuite occupée de manière continue. Le château connaît alors plusieurs transformations et reconstructions.

Les six dernières dates sont obtenues à partir  de sources historiques déjà exploitées. Entre 1360 et
1380,  les  ducs  de  Lorraine  reconstruirent  le  château.  Vers  1604,  ce  dernier  château  fut  détruit,  ce  qui
déboucha sur une occupation de moins en moins intensive. Du XIXe  au XXIe  siècle, le site fut réactivé en
1870, lors  de la guerre franco-allemande puis en 1914-1918, lors de la  première guerre mondiale et  enfin
en 1939-1945, lors de la seconde guerre mondiale. À partir de 1997 débutèrent les fouilles archéologiques.
Une simplification a été réalisée afin de résumer les quatre dernières dates entre la fin du XIXe  siècle et le
XXe  siècle  en  une  seule.  En  effet,  leur  connaissance  précise  n’est  due  qu’à  la  proximité  temporelle  que
nous avons par rapport à elles. Aussi, ces quatre dates ont été « résumées » par la date 1945 qui est symbol-
ique de la fin des guerres franco-allemandes et du début de la construction européenne. De plus, la dernière
trace « en dur » (un bloc de béton armé) laissée sur le chantier date de cette époque.

n Date réelle gHn, n + 1, n + 2L TCH0, nL TCH0, nL lnHTn- TCL
BIFURCATION

0 920 ≤ 25 1,32

1 960 ≤ 25 0,62 ≤ 0,88 856,00 856,00 1,32

2 1025 ≤ 25 0,57 ≤ 0,46 870,71 875,50 1,78

3 1140 ≤ 20 0,52 ≤ 0,19 883,34 899,05 2,10

4 1360 ≤ 1 0,90 ≤ 0,90 62,47 -876,67 2,66
BIFURCATION

5 1604 ≤ 1 0,72 ≤ 0,01 762,08 746,23 2,85

6 1945 ≤ 1 3,02
BIFURCATION ?

Figure 98. Les dates calendaires observées et premières estimations de g et TC

La  Figure  98  donne  une  première  estimation  de  g  et  deux  estimations  de  TC.  Elle  montre  une
décélération (Cash et alii, 2002). Toutefois, les barres d’erreurs ont été sans doute surestimées dans ce cas.
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Après plusieurs tests manuels, on trouve une valeur g comprise entre 0,56 (de n0 à n4) et 0,68 (de n5

à n6). La différence des valeurs s’explique sans doute par la présence d’une bifurcation entre n4 et n5 (Figure
98). Laurent Nottale a confirmé ces résultats en effectuant un tirage de type Monte Carlo afin d’ajuster g et
TC  en  utilisant  l’estimateur  statistique  de  la  variable  t  de  Student  (fig.  30).  On  constate  que  pour  g º

0,56938 on observe un pic de la variable t de Student avec un TC º 870 pour les cinq premières dates de la
série. Il n’y a qu’une chance sur 50 000 d’obtenir ces résultats au hasard.

Figure 99. L'ajustement de de g et de TC par un tirage Monte-Carlo (communication personnelle de Laurent Nottale)

La valeur de TC est donc voisine de 870. Cette valeur n’est pas aberrante, ni pour l’historien, ni pour
le géographe, puisqu’il s’agit du moment où l’empire carolingien se désagrège.

La fonction de bifurcation f(x) varie comme la fonction H T - TC Lm  où m est le nombre de bifurca-

tions  (Figure  100).  Le  problème  est  que  dans  le  cas  de  Boves  m  n’est  pas  constant,  d’où  la  nécessité  de
diviser la courbe en au moins deux parties : dans la première, m = 3, dans la seconde m = 2. La rupture de
pente de la courbe peut être interprétée, aussi comme une bifurcation.

Figure 100. La relation entre le rang et le ln(Tn - TC)

La  Figure  101  présente  les  dates  théoriques  obtenues  à  partir  des  valeurs  de  g  et  de  TC  choisies,
réinjectées dans l’équation de l’évolution.
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n Date théorique g optimisé lnHTn- TCL
BIFURCATION

0 920 1,70

1 959 0,56 1,95

2 1028 0,56 2,20

3 1150 0,56 2,45

4 1366 0,56 2,70
BIFURCATION

5 1600 0,68 2,86

6 1944 0,68 3,03
BIFURCATION ?

Figure 101. Les dates théoriques obtenues par l'équation de l'évolution

On constate ainsi qu’après chaque bifurcation supposée, le nombre d’embranchements, c’est-à-dire
en  fait  l’ampleur  du  choix,  diminue.  Il  passe  de  trois  à  deux.  Puis,  si  on  prend  comme  date  suivante
2080 ± 30 dans le cadre d’une étude du rythme économique, crise - non crise, dans les sociétés occidentales
(Nottale et alii, 2000), il passe de deux à un. Ce qui, en soi, pour une occupation d’un site archéologique,
c’est-à-dire un site qui a subi une « extinction », est très logique.

De plus, d’un point de vue purement mathématique, on remarque que si D = 2 alors :

K g1

g2
O2

= J 0,68
0,56

N2 º 1,47 º 
3
2

ce qui correspond bien à l’hypothèse des trois embranchements qui sont portés au nombre de deux après la
bifurcation temporelle.

La Figure 102 montre le nombre de choix d’évolutions possibles. Au début, il y a une rupture entre
l’empire carolingien et le système féodal, marquée par une désagrégation spatiale. De 920 à 1360, il y a, à
chaque  « moment  historique »  trois  branches  possibles  donc  trois  futurs  potentiels  dont  seulement  un  se
réalisera. Cela étant, le système ne semble avoir réellement bifurqué qu’à partir du moment où le nombre de
choix possibles s’est réduit à deux (en 1360). La bifurcation peut s’expliquer par l’intégration définitive, à
une échelle plus petite, du site de Boves dans l’Etat français en construction.

Figure 102. L'arbre de l'évolution spatio-temporelle du site de Boves de la fin de l'empire carolingien au XXIe
 siècle
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Si  l’évolution  s’était  poursuivie  autrement  (absence  d’État  français  par  exemple),  l’étape  suivante
de construction aurait eu lieu, sur la motte, vers 1751 (?). Quelle forme cette césure aurait-elle pu prendre ?
Quelle nouvelle structure territoriale aurait pu, là, prendre naissance ? Nous ne le savons pas mais certains
scenarii pourraient être échafaudés.

Rappelons  qu’après  1748,  année  du  traité  d’Aix-la-Chapelle,  et  la  constitution  de  la  Prusse  et  de
l’Autriche « la possibilité d’une hégémonie française sur l’Europe disparaît » (Duby, 1971, t.3, p. 246). La
France devra ensuite ferrailler d’abord pendant la Révolution, puis entre 1869 et 1870, puis entre 1914 et
1918 puis enfin entre 1939 et 1945 pour assurer son existence.

La  seconde  bifurcation  a  lieu  en  1945,  si  on  prend  comme  TC = 2080  ±  30,  et  si  on  considère
comme  recevables  les  résultats  de  Laurent  Nottale  et  alii  (2000).  Là,  il  n’y  a  plus  qu’un  choix  possible.
L’évolution du site n’a plus qu’une possibilité, qu’une branche. Tout comme les états antérieurs, cela peut
s’expliquer  par  l’intégration  européenne.  Il  ne  présente  plus  aucun  intérêt  quels  que  soient  les  niveaux
considérés, sauf au niveau scientifique. À partir de là, il n’est pas impossible de penser que le site de Boves
restera dans son état actuel : c’est-à-dire à l’abandon jusqu’à la prochaine rupture (2080 ?) qui peut être lui
redonnera un intérêt stratégique.

12.1.2. Bilan et perspective

Pour  finir,  il  faut  préciser  que,  pour  l’ensemble  des  séries  temporelles,  trois  cas  sont  possibles
(lorsqu’il existe au moins trois dates connues) : (1) l’accélération ; (2) la décélération ; (3) l’oscillation non
amortie.  À la vue des données déjà recueillies, les  trois  possibilités  semblent  exister.  Toutefois, la  qualité
des  données  temporelles  étant  ce  qu’elle  est,  elle  ne  permet  pas  la  réalisation  d’une  chronologie  aussi
précise que celle du château de Boves. Les dates sont incertaines ; beaucoup de dates ont une barre d’erreur
de  200  ans.  Aussi  mener  une  analyse  temporelle  généralisée  aux  1 412  autres  sites  semble  fastidieux  par
rapport à la qualité des données. Seule l’analyse spatiale donne des résultats exploitables.

12.2. L'espace

Cela étant, l’approche de Laurent Nottale demeure avant tout temporelle. Aussi, faut-il la compléter
par une analyse spatiale (Nottale, 1993 ; Nottale et alii,  2000, p. 350-353). L’analyse radiale a été retenue
pour la réaliser en première approche.

12.2.1. La méthode de l'analyse radiale

Afin de mener à bien cette réflexion, il faut partir d’une première approximation en supposant que
le nombre de châteaux recensés dans la fenêtre étude n’a pas varié au cours du temps, ce qui implique que
la  distribution  se  serait  cristallisée  entre  le  Xe  et  le  XIIIe  siècle,  ce  qui  est  historiquement  très  discutable,
comme ce sera montré dans le chapitre 14.

La  méthode  est  assez  simple  (Martin,  1997 ;  2003b).  On  calcule  une  succession  de  densités  de
châteaux en fonction de la surface des anneaux formés par des cercles dont le centre est un château localisé.
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On reporte ensuite les valeurs sur un graphique avec en abscisse le rayon maximal de l’anneau et en ordon-

née  le  rapport :  
nombre de châteaux
surface de l’ anneau

,  c’est-à-dire  la  densité  de  châteaux  dans  un  anneau.  Cependant,  cette

méthode  présente  des  effets  de  bords  non  négligeables,  car  les  anneaux  ne  sont  jamais  complets  et  leur
surface croît en fonction de la distance au centre. De plus, il dépasse rapidement les frontières de la fenêtre
d’étude.  Autrement  dit,  certains  anneaux  ne  sont  jamais  complets !  Cela  peut  engendrer  une  diminution
virtuelle  de  la  densité.  Ainsi,  les  premiers  résultats  obtenus  en  2005  (Forriez,  2005 ;  Forriez  et  Martin,
2008, Martin et Forriez, 2008) sont complètement biaisés. La Figure 103 illustre le problème : à partir  du
cinquième  anneau,  les  sites  connus  ne  couvrent  pas  toute  la  surface  de  l’anneau.  Il  faut  noter  qu’il  est
spécifique à l’analyse radiale : si on avait choisi des carrés, comme dans une analyse fractale par comptage
de boîtes carrées, il n’y aurait aucun effet de bord.

Figure 103. Exemple d'analyse radiale avec pour centre le château de Boves (communication personnelle de Laurent Nottale)

Réalisée sous Mathematica 4 par Laurent Nottale (juin 2006) avec l'ancien nuage de points (Forriez, 2005)

Ainsi,  une  méthode  de  correction  de  ces  effets  de  bord  a  été  mise  au  point.  C’est  ce  que Laurent
Nottale a appelé « méthode de la baignoire » (juin 2006).  Pour l’illustrer,  l’utilisation de la représentation
cartographique  de  l’ensemble  de  la  base  « catiau » apparaît  très  intéressante  (Figure  104).  La  méthode  se
décompose en trois étapes :

1. encadrer le nuage de points (Figure 105). Dans ce cas, les frontières sud et est sont purement
virtuelles ;  elles  sont  dues  au choix de la  fenêtre territoriale.  Il  faut  noter  qu’un  petit  rajout  a
été effectué à l’est pour prendre en compte la totalité des sites correspondant aux limites de la
Picardie des XIVe-XVe  siècle.  Au nord,  les  sites  belges n’ont  pas pu être pris  en compte,  car
les bases de données et les dictionnaires des châteaux sont franco-français. La frontière franco-
belge crée une limite artificielle.  Enfin, à  l’ouest,  la Manche crée une limite naturelle dont le
trait de côte a été ici très grossièrement tracé ;

2. créer une distribution aléatoire de points dans cet encadrement ;
3. effectuer  deux  analyses  radiales  avec  pour  centre  l’un  des  sites  de  la  distribution  analysée :

l’une avec la distribution observée, l’autre avec la distribution aléatoire dans chaque anneau le
rapport  entre  le  nombre  de  points  de  la  distribution  aléatoire  et  le  nombre  de  points  de  la
distribution  observée  varie  comme  celui  entre  la  densité  aléatoire  et  la  densité  observée.  On
obtient  ainsi  une  densité  relative  dont  la  variation  permet  de  juger  si  la  densité  réelle,  qui
demeure inconnue, varie en fonction de la distance au centre ou reste constante.
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Démonstration.

Soit un anneau dont la surface ST  est connue. Toutefois, la distribution des points est concen-
trée sur une surface inconnue SR dans cet anneau.

Soit  rR  =  
NR

SR
 correspondant  à  la  densité  réelle  du  nombre  de  points  sur  la  surface  SR.

Cependant, on ne peut estimer que robs  = 
NR

ST
  puisque SR  est inconnue. En effet, si l’anneau était complet,

on aurait rC = 
NC

ST
.

Le remplissage de l’anneau correspond alors à :

SR

ST
 = 

NR

rR

NC

rC

 = 
rC
rR

 × NR

NC

ï 

NR

SR
SR

ST
 = rC 

NR

NC

ï 
NR

ST
 = rC 

NR

NC

ï rR = rC 
NR

NC

La  densité  observée  est  proportionnelle  à  la  densité  réelle.  Toutefois,  cette  densité  réelle

reste inconnue. On crée alors une densité aléatoire de référence rA = 
NA

ST
 proportionnelle à la densité réelle.

rC ∂ robs 
NA

NR

Dans le cas de la Figure 105, la table de référence comporte, au total, 7 263 lieux aléatoires.
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Figure 104. Nuage de points des châteaux connus
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Figure 105. Encadrement du nuage de points

Point vert = point aléatoire ; point rouge : site dans un hameau ; point bleu : site dans une commune centre

12.2.2. Exemple de la répartition des châteaux autour de Boves

Étant donné qu’il existe 1 413 sites identifiés et 3 738 communes centres et hameaux, il est néces-
saire  de  présenter  davantage  la  méthode  que  l’ensemble  des  résultats.  L’exemple  choisi  est  bien  évidem-
ment l’étude de la répartition des châteaux autour du site de Boves.

Pour  cela,  on  applique  la  méthode  décrite  précédemment.  Quel  que  soit  l’intervalle  entre  les
anneaux  choisi,  la  distribution  entre  le  rayon  maximal  de  l’anneau  et  le  nombre  de  châteaux  connu  dans
l’anneau semble correspondre à une gaussienne centrée autour de 75 km, si l’on excepte les cas des inter-
valles 100 km et 130 km où les anneaux sont trop grands pour être centré sur cette valeur (Figure 106). La
densité de châteaux  par  anneaux croît  rapidement  du premier  anneau  vers un certain  anneau,  puis  décroît
beaucoup moins rapidement  vers le  dernier  anneau (Figure 106).  De même,  on observe des résultats  ana-
logues pour les lieux aléatoires (Figure 107). Par contre, le rapport entre le nombre de lieux aléatoires par
anneaux  et  le  nombre  de  châteaux  par  anneaux  est  constant  d’un  intervalle  à  l’autre  (Figure  108).
Autrement dit, la densité autour du château de Boves est constante. L’espace étudié est donc isotrope en ce
point.
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Figure 106-1. Tableau de synthèse de la répartition des châteaux autour de Boves
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Figure 106-2. Tableau de synthèse de la répartition des châteaux autour de Boves
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Figure 106-3. Tableau de synthèse de la répartition des châteaux autour de Boves
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Figure 106-4. Tableau de synthèse de la répartition des châteaux autour de Boves
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Figure 106-5. Tableau de synthèse de la répartition des châteaux autour de Boves
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Figure 107-1. Tableau de synthèse de la répartition des lieux aléatoires autour de Boves
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Figure 107-2. Tableau de synthèse de la répartition des lieux aléatoires autour de Boves
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Figure 107-3. Tableau de synthèse de la répartition des lieux aléatoires autour de Boves
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Figure 107-4. Tableau de synthèse de la répartition des lieux aléatoires autour de Boves
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Figure 107-5. Tableau de synthèse de la répartition des lieux aléatoires autour de Boves
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Figure 108. Variation du rapport entre le nombre de lieux aléatoires et le nombre de châteaux dans chaque anneau
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12.2.3. Analyse radiale moyenne de la répartition de tous les châteaux

La question qui va être abordée dans ce paragraphe est la suivante. Le cas du château de Boves est-
il valable en tout point représentant un château ? La réponse à cette interrogation est affirmative. D’après la
Figure 109, la distribution entre le rayon maximal de l’anneau et le nombre moyen de châteaux (ou de lieux
aléatoires) ressemble une fois à une gaussienne centrée autour de 75 km. De plus, le rapport entre le nom-
bre moyen de lieux aléatoires et le nombre moyen de châteaux est constant en moyenne en tout point ainsi
que dans chaque intervalle. Autrement dit, la densité est constante autour de chaque château. Ces résultats
seront confirmés dans le chapitre suivant. L’espace étudié est donc, en moyenne, isotrope.
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Figure 109-1. Tableau de synthèse des résultats de l'analyse radiale en tout lieu
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Figure 109-2. Tableau de synthèse des résultats de l'analyse radiale en tout lieu
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Figure 109-3. Tableau de synthèse des résultats de l'analyse radiale en tout lieu
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Figure 109-4. Tableau de synthèse des résultats de l'analyse radiale en tout lieu
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Figure 109-5. Tableau de synthèse des résultats de l'analyse radiale en tout lieu
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L’analyse  temporelle  n’est  pas  généralisable,  car  les  données  temporelles  de  la  base  Catiau  sont
trop hétéroclites. Aussi, le cas du château de Boves est remarquable, mais il est unique. Ainsi, l’exploitation
des  données  spatiales  semble  plus  pertinente.  En  effet,  l’analyse  radiale  en  tout  point  et  à  des  intervalles
différents montre que la densité moyenne est constante. Elle demeure cependant insuffisante pour conclure
sur la nature fractale de la répartition des châteaux. Ainsi, une analyse fractale que l’on appellera « général-
isée » doit être menée pour répondre à cette interrogation.
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13
L'analyse fractale généralisée

La  répartition  des  châteaux  connus  dans  le  nord  de  la  France  présente  une  structure  clairement
fractale. Son étude peut se réaliser via  un calcul de dimension fractale de boîtes carrées classique, et ainsi
dégager  une  organisation  globale  en  échelle  de  ce  territoire.  Le  problème  est  que  cette  méthode  « a-spa-
tialise »  l’information  géographique  de  base.  Cependant,  on  sait  que  la  dimension  fractale  dépend  du
nombre  de  points,  aussi,  si  l’on  peut  pré-découper  l’espace  concerné  par  un  maillage  carré,  puis  dans
chacun de ces carrés calculer une dimension fractale de boîtes carrées locale, on pourra observer des varia-
tions  spatiales  de  cette  dimension  fractale  liée  à  des  éléments  structurants  de  l’espace  géographique.  La
méthode consiste donc à désagréger l’information géographique jusqu’à une certaine grande échelle, puis à
en agréger de nouveau les rapports scalaires locaux en un champ unitaire.

13.1. Nuage de points et dimension fractale

Lorsque l’on effectue une mesure sur un nuage de points (ici les mottes et les châteaux), la dimen-
sion  fractale  peut  varier  de  0  à  2.  Afin  de  les  comparer,  on  effectue  le  calcul  sur  le  nuage  de  points  des
communes et des hameaux (Figure 110.a.) et  sur celui des châteaux (Figure 110.b.).  Ces deux graphiques
montrent une courbure qui apparaît dans les graphiques bi logarithmiques. Cette courbure est la manifesta-
tion  d’une  transition  fractal - non  fractal  sur  les  grandes  échelles  géographiques.  Toutefois,  il  ne  faut  pas
oublier qu’il existe également une transition au niveau des petites échelles géographiques (filtrée ici par la
méthode de calcul).

Pour  les  communes,  la  transition  aux  grandes  échelles  a  lieu  entre  ln(¶) = 0  (soit  ¶ = 1 km)  et
ln(¶) = 1,0  (soit  ¶ = 2,7 km).  La  même  pour  les  châteaux  est  observée  entre  ln(¶) = 0  (soit  ¶ = 1 km)  et
ln(¶) = 1,3 (soit ¶ = 3,7 km). Cela signifie que le nombre de carrés de taille 1 (204 km) et celui de taille 0,5
(102 km) s’emboîte parfaitement. À partir de celui de taille 0,25 (51 km), leur nombre n’est plus celui de la
grille. Autrement dit, une différenciation commence à s’opérer. La fractalité devient apparente.

Pour les communes et pour les châteaux, la transition aux petites échelles s’établit à ln(¶) = 5,5 (soit
¶ = 244,7 km). Il s’agit d’une échelle de coupure virtuelle puisqu’elle est liée à l’étendue de l’objet analysé.
À l’opposé, la transition fractal - non fractal observée aux grandes échelles est essentielle puisqu’en deçà de
cette  échelle  (2,7 km  pour  les  communes  et  3,7 km  pour  les  châteaux),  il  n’y  a  plus  d’informations  et  le
nuage de points devient non fractal. En effet, en allant vers les très grandes échelles, il n’y a plus de struc-
turation fractale puisque le carré sera soit  vide (N(¶) = 0)  ou soit  avec une valeur  et  une seule (N(¶) = 1).
Autrement  dit,  l’échelle  de  coupure  aux  grandes  échelles  est  liée  à  la  nature  même  de  l’information
géographique.
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Une  nouvelle  fois,  on  peut  rappeler  que  ce  modèle  de  transition  fractal - non  fractal  s’obtient

comme solution  d’une  équation  différentielle  du  premier  ordre  
d ln N

d ln ¶
 =  a  +  bN  (Nottale,  1993),  et  s’ex-

prime par la loi d’échelle suivante (valable uniquement pour les nuages de points) :

N(¶) = N0B1 + J ¶0

¶
NDF

où N(¶) est le nombre de carré de côte ¶ ; N0 est le carré de taille maximale ; ¶0 représente la taille de la plus
petite boîte et ¶ est le côté de la boîte de mesure qui varie ici de 20 à 28 (c’est-à-dire entre 1 et 256 km) et D
est la dimension fractale c’est-à-dire la pente entre les deux échelles de coupure identifiées précédemment.
Elle correspond à ce que Philippe Martin avait appelé la dimension fractale asymptotique (Martin, 2006b ;
Martin,  2006c ;  Martin,  2006d ;  Martin  2008c ;  Martin,  2009).  Ici,  la  dimension  fractale  des  communes
vaut 1,701 ± 0,004 et celle des châteaux 1,644 ± 0,004. De ce résultat, on peut conclure que la structuration
de l’espace géographique des villes et villages du nord de la France est étroitement liée à la répartition des
châteaux. Toutefois, elle ne dit rien sur la répartition locale des dimensions fractales. Il faut donc construire
une méthode permettant de répondre à ce problème.

222   



a. Calcul d'une dimension fractale par comptage de boîtes carrées sur le nuage de points des communes

b. Calcul d'une dimension fractale par comptage de boîtes carrées sur le nuage de points des châteaux

Figure 110. Transitions fractal - non fractal observées dans le cas de la répartition des communes centres et hameaux en dépendant et de la répartition 
des châteaux dans l'espace géohistorique étudié

13.2. Le champ des rapports scalaires

On  appellera  champ  des  rapports  scalaires  (Al  Khalifeh,  2008)  la  représentation  tridimension-
nelle des coordonnées géographiques (représentée par une maille de résolution) et de la dimension fractale
associée à chacun de ces carrés (Figure 113).

  223



L’analyse consiste à tronquer le calcul de la dimension de boîtes et à observer le comportement de
la dimension fractale dans une boîte particulière. Pour ce faire, huit grilles dyadiques (Figure 111) ont été
créées.  Chacune  d’elles  représente  les  carrés  où  il  y  a  des  points.  Ici,  l’analyse  a  été  réalisée  sur  les
châteaux.  À chacune d’elles,  on  associe  le  nombre  de châteaux  contenu  dans  la  maille  (Figure  112)  et  la
dimension fractale locale.

On  retrouve  évidemment  les  résultats  avec  la  dimension  fractale  de  boîtes  globale.  Les  deux  pre-
mières images (Figure 111, Figure 112, Figure 113 et Figure 114) correspondent à la zone du graphique de
la Figure 110.b. entre ln(1) et ln(échelle de coupure maximale), c’est-à-dire où la dimension fractale atteint
son maximum de 1,7. Les images n°3-4-5-6 correspondent à la zone du graphique de la Figure 110.b. entre
ln(échelle de coupure maximale) et ln(échelle de coupure minimale). Les images n°7-8 correspondent à la
zone du graphique de la Figure 110.b. au-delà de ln(échelle de coupure minimale), c’est-à-dire la zone où
localement la dimension fractale est égale à 0. D’ailleurs, la grille n°8 (Figure 111) ressemble beaucoup à la
répartition originelle des châteaux.

Toutefois,  ce  type  de  graphique  permet  de  mieux  comprendre  la  répartition  spatiale  des  données,
car on retrouve les vides et  les pleins dont la cause est  le manque d’information, et  permet d’en établir  le
« poids » réel dans la dimension fractale des lieux du nuage de points. En fait, la répartition de la dimension
fractale des châteaux est très homogène sur l’ensemble des différentes grilles, en termes d’effectifs (Figure
112) et en termes de dimension fractale (Figure 114).
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Figure 111. Représentation des grilles carrées de résolution ¶ (en km) contenant au moins un château pour une résolution donnée
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Figure 112. Représentation tridimensionnelle des carrés de résolution ¶ (en km) et du nombre de châteaux dans chaque carré
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Figure 113. Représentation tridimensionnelle des carrés de résolution ¶ (en km) et de leurs densités respectives
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Figure 114. Représentation tridimensionnelle des carrés de résolution ¶ (en km) et de leurs dimensions fractales respectives

13.3. Châteaux et centres urbains

La  Figure  114-6  est  particulièrement  intéressante,  car  la  plupart  des  pics  de  dimensions  fractales
« locales »  correspondent  à  la  localisation  des  principaux  centres  urbains  actuels  (Figure  115).  On  peut
prétendre alors  qu’il  s’agit  d’une méthode générale permettant  l’identification des  centres dans  un espace
géographique :  il  suffit  de  choisir  une  résolution  suffisamment  proche  de  l’échelle  de  coupure  identifiée
grâce à la Figure 110-b pour les faire apparaître clairement. Seuls sept centres urbains n’apparaissent pas.
Dans le cas de Beauvais, Compiègne, Rouen et Saint-Quentin, il semble que cela soit dû à leur position en
bordure  de  la  fenêtre  d’analyse.  Pour  Calais  et  Dunkerque,  un  autre  effet  de  bord  joue :  celui  du  trait  de
côte. Afin, pour Cambrai, cela s’explique sans doute par le fait que la maille est trop fine pour faire appa-
raître le  pic de dimension.  Ces cas particuliers  expliqués,  on peut  conclure que la localisation des centres
urbains  dépend  de  celle  de  châteaux.  Autrement  dit,  la  position  des  villes  dépend  du  réseau  inter-urbain
sous-jacent (Martin, 2004).
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Figure 115. Localisation des centres urbains de l'espace géohistorique étudié par l'intermédiaire des pics de dimensions fractales « locales » avec une 
maille de 6,375 km

13.4. Statistique des dimensions fractales locales

Il est possible alors d’estimer de manière statistique des dimensions fractales locales en fonction de
la résolution (Figure 116 et Figure 117). On constate que l’on soit dans le cas des châteaux (Figure 116), ou
dans celui des communes et des hameaux (Figure 117), une diminution de la valeur de la dimension frac-
tale  en  fonction  de  la  résolution,  mais  aussi  une  augmentation  de  l’écart-type.  Ainsi,  si  l’on  compare  ces
résultats avec ceux obtenus avec l’analyse fractale d’Avignon, on constate que la Figure 118 et de la Figure
119  correspondent  aux  résultats  de  la  Figure  79.  La  valeur  de  la  dimension  fractale  moyenne  permet  de
percevoir  une « dynamique d’échelles »,  c’est-à-dire une dégradation de la dimension fractale en fonction
du logarithme de la résolution, tout comme dans le cas de la Figure 79.

Résolution
Nombre de

cases

Dimension fractale

moyenne
Écart-type

Erreur quadratique

sur la moyenne

204 1 1,660 - 0,004

102 4 1,468 0,116 0,058

51 16 1,125 0,384 0,096

25,5 44 1,028 0,286 0,043
12,75 151 0,740 0,308 0,025
6,375 521 0,097 0,273 0,012

3,1875 1 111 0 - -

1,59375 1 371 0 - -

Figure 116. Résultats numériques de l'analyse fractale locale des châteaux (NT  = 1 413)
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Résolution
Nombre de

cases

Dimension fractale

moyenne
Écart-type

Erreur quadratique

sur la moyenne

210 1 1,690 - 0,004

105 4 1,505 0,113 0,057

52,5 16 1,205 0,503 0,126
26,25 43 1,187 0,364 0,056

13,125 157 0,964 0,381 0,030

6,5625 569 0,594 0,503 0,021
3,28125 1 935 0 - -

1,64063 3 434 0 - -

Figure 117. Résultats numériques de l'analyse fractale locale des communes centres et des hameaux (NT  = 3 738)

Figure 118. Modèle fractal - non fractal et dimension fractale « locale » par grille appliquée aux résultats de la distribution des châteaux
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Figure 119. Modèle fractal - non fractal et dimension fractale « locale » par grille appliquée aux résultats de la distribution des communes centres et 
hameaux en dépendant

Ce  chapitre  a  une  nouvelle  fois  montré  que  la  dimension  fractale  « globale »  était  différente  des
dimensions fractales « locales ». Le concept de « dynamique d’échelle » est clairement au cœur de l’analyse
des  résultats  des  dimensions  fractales  « locales »,  tant  de  la  répartition  des  communes  et  des  hameaux  en
dépendant, que dans une sous-structure de cet ensemble que représente la répartition des châteaux. De plus,
l’étude de la répartition de la dimension fractale « locale » à la limite d’une échelle de coupure permet de
proposer une méthode qui identifie de manière objective les centres géographiques d’une structure spatiale
d’origine anthropique.

Néanmoins, le maillage choisi est complètement arbitraire. Il ne correspond pas à des territoires au
sens  géographique du  terme.  Aussi,  le  chapitre  suivant  essayera  de  proposer  une  approche territoriale  via

une dimension fractale « locale » qui, pour ne pas être confondue avec les précédentes, sera appelée « dimen-
sion fractale territoriale ».
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14
L'étude multi-échelle d'un espace-temps

Une étude géohistorique offre la possibilité d’analyser l’évolution d’un phénomène spatial au cours
du  temps.  La  répartition  des  châteaux  n’échappe  pas  à  cette  règle.  D’après  les  résultats  précédents,  il  est
possible de périodiser l’espace géohistorique picard et artésien en six périodes géographiques, périodes au
cours desquelles non seulement le nombre de châteaux diminue, mais en plus, les territoires qui les envelop-
pent, se transforment.  Pour essayer  de comprendre l’organisation spatiale de cette transformation,  on peut
une nouvelle fois utiliser la répartition des châteaux comme indicateur. En effet, il est possible de calculer
une  « dimension  fractale  territoriale ».  Elle  correspond  à  une  dimension  fractale  par  comptage  de  boîtes
carrées du nuage de lieux représentant la répartition des châteaux dans un territoire donné. Pour cela, il faut
une référence statistique puisque tous les châteaux ne sont pas datés.

14.1. Caractéristiques de la population statistique de référence

Le nuage de points  représentant  la  répartition atemporelle  des  châteaux  sur  l’ensemble  de  la zone
d’étude possède une dimension fractale valant 1,644 ± 0,004. On compte 1 130 châteaux sur 1 413 dont la
durée est établie, soit 80% de la population totale. Cela signifie que dans un territoire donné représentant un
sous-échantillon  de  la  population  totale,  il  faut,  pour  que  le  résultat  soit  significatif,  une  sous-population
possédant environ 20% de châteaux dont la durée est non établie.

La  Figure  120  présente  le  calcul  des  dimensions  fractales  globales  de  manière  « a-territoriale »,
c’est-à-dire qu’aucune découpe administrative n’a été appliquée. L’ensemble des châteaux est donc pris en
compte pour une période géographique donnée. On constate une stabilité de la dimension fractale autour de
1,6.  À  l’opposé,  le  nombre  total  de  châteaux  sur  l’ensemble  de  l’espace  considéré  diminue  au  cours  des
siècles, ce qui a pour conséquence l’augmentation de l’échelle de coupure aux grandes échelles. Autrement
dit, la distance moyenne entre les châteaux s’accroît. Enfin, la Figure 120 montre une forte diminution des
châteaux à durée déterminée, contrairement à ce que l’on aurait pu penser a priori.

  233



Période

géographique

Nombre

total de

châteaux

Pourcentage

de châteaux

à durée

établie dans

l'échantillon

Pourcentage

de châteaux

à durée non

établie dans

l'échantillon

Échelle de

coupure

minimale

HkmL

Échelle de

coupure

maximale

HkmL

Estimation de

la dimension

fractale

territoriale

900-1100 1 413 80 20 4 245 1,644 ≤ 0,004

1100-1300 1 407 80 20 4 245 1,652 ≤ 0,005

1300-1400 1 351 79 21 4 245 1,649 ≤ 0,005

1400-1500 1 109 74 26 5 245 1,631 ≤ 0,005

1500-1700 1 062 73 27 5 245 1,627 ≤ 0,005

1700-1900 826 66 34 6 245 1,622 ≤ 0,005

Figure 120. Dimension fractale territoriale globale de chacune des périodes géographiques

14.2. Étude diachronique multi-échelle de la répartition territoriale des châteaux

À partir  des données de la Figure 120, Il  est  désormais possible de mener une étude diachronique
multi-échelle sur la répartition territoriale des châteaux. L’objectif de cette analyse est d’essayer de compren-
dre l’évolution de l’organisation scalaire et territoriale au cours de l’histoire d’un espace.

14.2.1. Présentation des résultats

À partir  des données géohistoriques développées dans le chapitre 11,  il  est  possible de développer
une approche complémentaire aux résultats  apportés par  le  chapitre 13.  Les Figures 121,  122,  123 et  124
présentent les résultats obtenus pour les quatre premières périodes géographiques, résultats auxquels il faut
ajouter ceux des deux dernières périodes présentés dans la Figure 125. Une nouvelle fois, on constate que
la  dimension  fractale  territoriale  locale  est  différente  de  la  dimension  fractale  territoriale  globale  (Figure
120) et que la valeur de la dimension fractale ne dépend pas du nombre de châteaux appartenant à tel ou tel
territoire.  Si  l’on prend le cas du Boulonnais  et  de l’Amiénois dans la  Figure 122,  on remarque que pour
une  dimension  fractale  similaire,  il  existe  un  facteur  deux  entre  le  nombre  de  châteaux  du  Boulonnais  et
celui de l’Amiénois. Par contre, les résolutions minimale et maximale sont spécifiques à chaque territoire.
La  dimension  fractale  en  dépend  explicitement.  En  effet,  il  semblerait  que  plus  un  territoire  s’agrège  au
cours du temps, plus sa dimension fractale est élevée.
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Territoire
Nombre de

châteaux

Pourcentage

de châteaux

à durée

établie dans

l'échantillon

Pourcentage

de châteaux

à durée non

établie dans

l'échantillon

Échelle de

coupure

minimale

HkmL

Échelle de

coupure

maximale

HkmL

Estimation de

la dimension

fractale

territoriale

Amiénois 186 82 18 4 67 1,345 ≤ 0,008

Vermandois 56 79 21 4 67 1,138 ≤ 0,014

Nomois 43 72 28 4 33 1,241 ≤ 0,016

Vendeuillais 33 70 30 4 33 1,157 ≤ 0,013

Ponthieu et

Vimeu
227 74 26 4 134 1,282 ≤ 0,006

Ternois 170 85 15 4 67 1,343 ≤ 0,007

Boulonnais 99 92 8 3 33 1,343 ≤ 0,010

Ostrevant 26 96 4 3 33 1,089 ≤ 0,012

Artois 119 85 15 4 67 1,259 ≤ 0,010

Ardrésis 8 63 37 5 16 0,887 ≤ 0,042

Figure 121. Dimension fractale territoriale de la période géographique vers 900 - vers 1100

Territoire
Nombre de

châteaux

Pourcentage

de châteaux

à durée

établie dans

l'échantillon

Pourcentage

de châteaux

à durée non

établie dans

l'échantillon

Échelle de

coupure

minimale

HkmL

Échelle de

coupure

maximale

HkmL

Estimation de

la dimension

fractale

territoriale

Amiénois 224 81 19 4 134 1,325 ≤ 0,008

Breteuil 10 70 30 4 8 1,068 ≤ 0,102

Montdidier 60 78 22 3 67 1,050 ≤ 0,011

Vermandois 60 73 27 4 33 1,048 ≤ 0,016
Noyon 23 74 26 4 33 1,054 ≤ 0,018

Montreuil 12 100 0 2 16 0,894 ≤ 0,026

Hesdin 8 100 0 2 8 0,775 ≤ 0,039

Saint-Pol 70 90 10 4 67 1,110 ≤ 0,011

Ponthieu 180 69 31 4 67 1,295 ≤ 0,008

Aumale 14 79 21 3 16 0,643 ≤ 0,018

Eu 40 73 27 4 33 1,093 ≤ 0,010

Artois 255 84 16 4 134 1,257 ≤ 0,008

Boulonnais 92 90 10 3 33 1,321 ≤ 0,010

Calaisis 8 100 0 5 16 0,913 ≤ 0,049

Figure 122. Dimension fractale territoriale de la période géographique vers 1100 - vers 1300
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Territoire
Nombre de

châteaux

Pourcentage

de châteaux

à durée

établie dans

l'échantillon

Pourcentage

de châteaux

à durée non

établie dans

l'échantillon

Échelle de

coupure

minimale

HkmL

Échelle de

coupure

maximale

HkmL

Estimation de

la dimension

fractale

territoriale

France 1 062 80 20 5 245 1,605 ≤ 0,005

Calaisis 52 79 21 4 67 1,055 ≤ 0,014

Ponthieu 133 68 32 3 67 1,252 ≤ 0,010

Figure 123. Dimension fractale territoriale de la période géographique vers 1300 - vers 1400

Territoire
Nombre de

châteaux

Pourcentage

de châteaux

à durée

établie dans

l'échantillon

Pourcentage

de châteaux

à durée non

établie dans

l'échantillon

Échelle de

coupure

minimale

HkmL

Échelle de

coupure

maximale

HkmL

Estimation de

la dimension

fractale

territoriale

Picardie 369 71 29 4 134 1,353 ≤ 0,004

Boulonnais 91 90 10 3 67 1,164 ≤ 0,010

Eu 30 77 23 4 33 0,971 ≤ 0,012

Saint-Pol 51 86 14 4 67 1,119 ≤ 0,013

Hesdin 35 89 11 3 33 1,042 ≤ 0,012

Montreuil 18 89 11 2 16 0,770 ≤ 0,017

Artois 148 74 16 4 134 1,151 ≤ 0,008

Calaisis 7 57 43 5 16 0,780 ≤ 0,049

Figure 124. Dimension fractale territoriale de la période géographique vers 1400 - vers 1500

Période

géographique
Nombre de

châteaux

Pourcentage

de châteaux

à durée

établie dans

l'échantillon

Pourcentage

de châteaux

à durée non

établie dans

l'échantillon

Échelle de

coupure

minimale

HkmL

Échelle de

coupure

maximale

HkmL

Estimation de

la dimension

fractale

territoriale

1500-1700 773 71 29 5 245 1,556 ≤ 0,005

1700-1900 823 66 34 6 245 1,622 ≤ 0,005

Figure 125. Dimension fractale territoriale aux deux dernières périodes géographiques sur le territoire de la France
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Pour conclure, on peut établir une dimension fractale territoriale moyenne en fonction de la période
considérée. La Figure 126 établit les résultats obtenus qui semblent confirmer l’idée que plus un territoire
est  agrégé,  plus  la  dimension  fractale  est  élevée,  et,  a  contrario,  plus  un  territoire  est  désagrégé,  plus  la
dimension fractale est faible. On peut faire correspondre les variations de la dimension fractale territoriale
locale moyenne aux différents événements historiques présentés dans le chapitre 11. La période 900-1100
correspond  à  l’émergence  du  système  féodal :  les  territoires  sont,  certes,  des  reliquats  de  l’empire  car-
olingien,  mais  restent  cohérents.  La  période  1100-1300  correspond  à  ce  que  l’on  appelle  l’émiettement
féodal et à la reprise en main des Capétiens de leur royaume. La période 1300-1400 marque le paroxysme
de cette politique territoriale, tandis que, au contraire, la période 1400-1500 correspond à une désagrégation
due  à  l’État  bourguignon.  Puis,  les  périodes  1500-1700  et  1700-1900  matérialisent  le  retour  d’un  État
royal, puis républicain, fort.

Période

géographique
Nombre de

territoires

Dimension fractale

territoriale locale moyenne
Écart-type

Erreur quadratique

à la moyenne

900-1100 10 1,208 0,145 0,046

1100-1300 14 1,060 0,204 0,054

1300-1400 3 1,304 0,279 0,161

1400-1500 8 1,044 0,199 0,070

1500-1700 1 1,556* 0,139* 0,005*

1700-1900 1 1,622* 0,143* 0,005*

Figure 126. Dimension fractale territoriale territoriale locale moyenne

* Ces valeurs numériques sont directement calculées sur la répartition des châteaux aux périodes considérées.

14.2.2. Cartographie des résultats

Les  Figures  127,  128,  129,  130,  131  et  132  montrent,  à  légende  constante,  les  représentations
cartographiques  des  résultats  précédents.  Une  nouvelle  fois,  on  perçoit  bien  que,  plus  un  territoire  est
cohérent, plus sa dimension fractale est élevée, sa cohérence étant donnée d’une part, par sa taille (échelle
de  coupure  maximale),  ou  d’autre  part,  l’efficacité  du  contrôle  territorial  sous-jacent  à  la  répartition  des
châteaux donnée par la distance moyenne entre les sites (échelle de coupure minimale).
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Figure 127. Localisation des dimensions fractales dans chaque territoire vers 900-1100
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Figure 128. Localisation des dimensions fractales dans chaque territoire vers 1100-1300
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Figure 129. Localisation des dimensions fractales dans chaque territoire vers 1300-1400
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Figure 130. Localisation des dimensions fractales dans chaque territoire vers 1400-1500
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Figure 131. Localisation des dimensions fractales dans chaque territoire vers 1500-1700
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Figure 132. Localisation des dimensions fractales dans chaque territoire vers 1700 à nos jours
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L’étude de la dimension fractale territoriale complète et conclut les analyses des chapitres 11 et 13.
Il  fournit  des  informations  sur  le  rôle  du  maillage  administratif  et  politique  au  sein  d’un  espace  géohis-
torique marqué  par  des  conquêtes  et  des  reconquêtes  territoriales.  Ainsi,  une  véritable  étude scalo-spatio-
temporelle  a  pu  être  proposée.  S’il  est  vrai  que  les  données  de  la  base  Catiau  peuvent  poser  un  certain
nombre de problèmes du point de vue de la fiabilité des informations temporelles, et parfois, des localisa-
tions  dans  l’espace,  elle  a  tout  de  même  permis  de  construire  une  méthode  générique  pour  l’étude  d’un
espace en géographie, méthode qui sera reprise dans la partie suivante.
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Partie 4. Étude multi-échelle de la répartition de 

l’établissement humain sur Terre
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15
Géographie du peuplement et analyse multi-échelle

Il  serait  impensable  d’achever  la  rédaction  de  cette  thèse  sans  utiliser  l’échelle  maximale  de  la
géographie,  à  savoir  l’échelle  de  la  Terre  elle-même (Maby,  2003),  et  quel  sujet  s’y  prête  le  mieux  si  ce
n’est celui de la répartition de la population de notre planète. L’objectif de cette ultime analyse est double.
Tout d’abord, il s’agit d’utiliser sur un seul objet géographique l’ensemble des méthodes qui a été proposé
tout au long de cette thèse. Ensuite, cette réflexion permettra d’introduire la conclusion générale.

L’étude de la répartition de la population sur Terre est aussi ancienne que la géographie elle-même.
Toutefois, il semble qu’aucune mesure de dimension fractale de cette répartition n’a été envisagée jusqu’à
présent.

Le  site  Tageo  (http://www.tageo.com)  permet  d’obtenir  des  données  à  l’échelle  nationale  de  la
répartition de la population dans tous les États, reconnus par l’ONU. On peut donc envisager deux pistes :
d’une part, l’étude des lois rang - population urbaine à l’échelle nationale, mais aussi à l’échelle continen-
tale et à l’échelle mondiale ; d’autre part, l’étude multi-scalaire de la répartition spatiale de la population à
l’échelle nationale, continentale et mondiale.

Avant  de  commencer  ces analyses,  il  est  bon,  d’une part,  de  rappeler  les  différents  liens existants
entre  la  géographie  et  la  population,  et,  d’autre  part,  de  présenter  les  principaux  travaux  unissant  géogra-
phie du peuplement (qui sera spécifiquement étudiée ici) et analyse spatiale.
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15.1. Géographie et populations

La  population  est  « l’ensemble  des  habitants  d’un  territoire  donné » (Thumerelle,  1996,  p. 51)  ou
« l’ensemble [des] individus disposant d’une structure et d’une dynamique internes propres » (Thumerelle,
1996,  p. 51).  Autrement  dit,  « une  population  n’existe  que  comme  ensemble.  Les  caractéristiques  d’une
population  sont  exclusivement  des  caractéristiques  collectives »  (Noin  et  Thumerelle,  1993,  p. 19).  La
population  est  donc  un  objet  pluridisciplinaire,  par  définition,  à  petite  échelle.  Il  existe  de  nombreuses
disciplines qui construisent cet objet d’étude : la démographie, l’écologie, la biologie, l’histoire, la géogra-
phie,  etc.  (Noin  et  Thumerelle,  1993).  Dans  le  champ  de  la  géographie,  l’étude  de  la  répartition  de  la
population a toujours été un domaine particulier. En effet, c’est par l’intermédiaire de cette entrée que Paul
Vidal  de  la  Blache  (1922)  avait  choisi  de  construire  la  géographie  humaine.  Il  s’agissait  évidemment  de
répondre à une question non triviale : « Où sont les Hommes sur la Terre ? ». Pour Paul Vidal de la Blache,
l’objet  d’étude  principal  est  ce  qu’il  appelle  les  « établissements  humains ».  Il  en  distingue  deux :  les
établissements temporaires et les établissements sédentaires. Il est bien entendu que seuls les établissements
sédentaires  sont  facilement  cartographiables.  De  plus,  il  propose  d’opposer  le  regroupement  humain  à
l’isolement humain. Les regroupements sont deux types : les villes qui accueillent des habitats agglomérés
et  concentrés,  et  les  villages  qui  se  définissent  par  des  habitats  agglomérés  et  déconcentrés.  Aujourd’hui,
les  liens  entre  géographie  et  population  s’articulent  à  travers  deux  grandes  sous-disciplines  (Thumerelle,
1996) :  la  géographie  de  la  population  (la  plus  étudiée)  qui  s’occupe  des  processus  et  des  dynamiques
spatiaux contemporains (états  actuel et  futur  de la  population), et  la  géographie du peuplement  qui établit
les structures spatiales (états passé et actuel de la population), ainsi que leurs causes.

La géographie de la population a fortement évolué depuis un siècle.  Cette transformation est mar-
quée par trois grandes étapes (Noin et Thumerelle, 1993). Tout d’abord, de la fin du XIXe siècle aux années
1950,  il  s'agissait  d'étudier  le  rapport  entre  les  Hommes  et  leur  milieu  physique,  milieu  expliquant  leur
répartition. Ensuite, à partir des années 1950, elle s’est rapprochée de la démographie, science du dénombre-
ment de la population humaine. Ce rapprochement se décline en trois grandes sous-disciplines : la géogra-
phie  démographique  qui  correspond  à   une  « utilisation  par  les  géographes  des  indicateurs  démo-
graphiques »  (David,  2004),  la  démogéographie  qui  consiste  en  « une  mise  en  valeur  de  la  dimension
spatiale  des  faits  démographiques »  (David,  2004),  et  la  démographie  spatiale  qui  se  définit  comme  un
« champ  étroit  avec  des  préoccupations  proches  de  celles  de  la  démographie  statistique »  (Noin  et
Thumerelle, 1993, p. 5) qui est profondément marquée par l’œuvre de Hervé Le Bras (1993 ; 2000 ; 2005).
Enfin,  à  partir  des  années  1970,  un  rapprochement  avec  la  sociologie  a  été  opéré.  En  effet,  celle-ci  est
désormais  perçue  comme  étant  « l’analyse  des  processus  engendrant  les  configurations  géographiques »
(Noin et Thumerelle, 1993, p. 5). Ainsi, on est amené à réaliser des études combinant faits sociologiques et
faits démographiques pour expliquer la répartition et la mobilité des populations.

Cependant,  cette  mobilité  est  rarement  intercontinentale  (Le Bras,  1993 ;  Baudelle,  2003,  p. 186).
De ce  fait,  il  existe  une certaine  forme d’inertie,  c’est-à-dire  une  stationnarité  de  la  population  mondiale.
C’est  ce  qu’étudie  la  géographie  du  peuplement.  Celle-ci  a  pour  objet  d’étude  la  structure,  et  non  la
dynamique  (Baudelle,  2003).  D’abord,  elle  établit  la  répartition  de  la  population  à  la  surface  de  la  terre.
Ensuite,  elle  propose  des  grands  facteurs  explicatifs  autour  des  concepts  d’œkoumène  et  de  foyers  de
peuplement. Enfin, elle essaye de comprendre les rapports entre dynamique démographique (court terme) et
dynamique  de  peuplement  (long  terme).  Autrement  dit,  « le  thème  du  peuplement  est  d’un  grand  intérêt
scientifique mais aussi  pédagogique car il  permet une approche globale de la géographie humaine, échap-
pant  autant  à  la  segmentation  habituelle  entre  branches  (géographie  rurale,  urbaine...)  qu’à  la  division
courante entre géographie physique et géographie humaine » (Baudelle, 2003, p. 5).
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Cette quatrième partie s’intéressera à la géographie du peuplement, et non à celle de la population.
D’après  l’imposante  littérature  sur  le  sujet,  il  existe  deux  grands  facteurs  expliquant  cette  répartition  des
Hommes :  les  facteurs  physiques  et  les  facteurs  historiques  (Vidal  de  la  Blache,  1922 ;  Noin,  1979 ;
George,  1993 ;  Baudelle,  2003 ;  David,  2004).  Les  facteurs  physiques  sont  assez  simples  à  établir.  Le
facteur climatique est  plus important,  car environ la moitié de la population mondiale habite dans la zone
tempérée  (George  1993).  Toutefois,  il  n’est  pas  unique :  les  reliefs,  le  réseau  hydrographique  et  les  sols
jouent également un rôle essentiel. De plus, les facteurs historiques sont tout autant déterminants. Ces deux
facteurs combinés permettent de définir d’une part le concept d’œkoumène, et d’autre part  celui de foyers
de peuplement.

L’œkoumène est un terme inventé par Max Sorre, comme le rappelle Pierre George (1993, p. 7). Il
correspond à l’espace habité, ou habitable par les Hommes (David, 2004). « L’œkoumène est donc l’ensem-
ble des pays où l’humanité vit et procrée » (George, 1993, p. 8).

« Les principaux foyers de peuplement, si l’on excepte les pays neufs, sont issus d’une occupation
humaine proportionnellement  dense  dans  des  temps anciens » (Dumont,  2004,  p. 271).  Autrement  dit,  les
principaux  foyers  de  peuplement  renvoient  à  un  concept   qui  possède  une  dimension  beaucoup  plus  his-
torique et qui est étroitement lié à la notion de concentration humaine forte (Vidal de la Blache, 1922). De
plus, ces foyers peuvent être considérés comme des « mondes pleins » pour reprendre une expression chère
à  Pierre  Chaunu  (1969).  Toutefois,  ces  foyers  ont  une  définition  qui  fluctue  davantage  en  fonction  des
auteurs.  Néanmoins,  la  différence  ne  se  joue  qu’entre  trois  ou  quatre  foyers  de  population  historiques.
Ainsi,  tous  les  auteurs  s’accordent  sur  le  foyer  d’Asie  orientale  (Japon,  Corée(s),  Chine  orientale  et
Taïwan), sur celui du subcontinent indien (Inde, Pakistan, Bangladesh, Népal, Bhoutan) et sur celui d’Eu-
rope matérialisé par une dorsale bien connue entre Londres et  Milan en passant par Bruxelles et  le bassin
industriel de la Ruhr (Baudelle, 2003 ; David, 2004). À cette liste, certains ajoutent le foyer nord-américain
autour  de  la  région  des  Grands  Lacs  (Noin,  1979 ;  George,  1993 ;  Dumont,  2004 ;  Guillon  et  Sztokman,
2008). Autour de ces foyers principaux gravitent des foyers secondaires : le golfe de Guinée en allant de la
Côte-d’Ivoire au Nigeria ;  l’archipel indonésien autour de Java en incluant l’Indochine, le croissant fertile
en  allant  du  Nil  au  Proche-Orient,  le  Mexique  central,  la  Cordillères  des  Andes,  le  Rio  de  la  Plata,  les
Caraïbes,  le  Maghreb,  le  rift  et  les  Grands  Lacs  africains,  le  Moyen-Orient  autour  de  la  Mésopotamie  et
l’Australie  orientale avec la Nouvelle-Zélande et  les  îles Fiji  (Noin, 1979 ;  David,  2004 ;  Dumont,  2004 ;
Guillon et Sztokman, 2008). Autrement dit, pour certains auteurs, le foyer nord-américain n’est qu’un foyer
secondaire.

Pour  conclure,  on  peut  rappeler  que  « ce  n’est  pas  à  la  façon  d’une  nappe  d’huile  envahissant
régulièrement  la  surface  terrestre  que  l’humanité  en  a  pris  possession  solide  et  durable.  Des  intervalles
vides  ont  persisté  longtemps,  persistent  encore  en  partie,  à  maintenir  la  séparation  des  groupes.  Ceux-ci
obéissent à une loi de nécessité en se séparant, en s’écartant les uns des autres » (Vidal de la Blache, 1922,
p. 68-69).  Même si,  de  nos  jours,  on  circule  beaucoup  plus  facilement  et  beaucoup  plus  rapidement  qu’à
l’époque de Paul Vidal de la Blache, l’inertie des foyers de peuplement est toujours d’actualité. À l’échelle
mondiale, on constate toujours des concentrations et des déconcentrations humaines (cf. chapitre 16), c’est-
à-dire des « terres vides » et des « terres pleines » pour reprendre les expressions de Pierre-Jean Thumerelle
(1996),  mais  Pierre  George  (1993),  par  exemple,  souligne  un  problème  majeur  autour  de  cette  notion  de
concentration. En effet, une population peut être concentrée un niveau local (cf. chapitre 17), et déconcen-
trée  à  un  niveau  beaucoup  plus  global  (cf.  chapitres  16  et  17).  Il  existe  donc  un  problème  d’articulation
entre les échelles, donc un problème de fractalité. Il est vrai que « parler de concentration ou de dispersion
de  la  population  n’a  de  sens  que  pour  une  échelle  donnée  d’observation »  (Le  Bras,  1993,  p. 115).
Autrement dit, le problème concentration-déconcentration est de même nature que le questionnement entre
le vide et le plein d’une ville (cf. chapitre 9). La géographie du peuplement peut alors se construire autour
d’objets et d’analyses fractals.
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15.2. Géographie du peuplement et analyse fractale

Le  vide  et  le  plein  en  géographie  du  peuplement  sont  souvent  associés  aux  différentes  notions
gravitant  autour de la  description des objets  célestes, et  ce dès Paul  Vidal  de la  Blache (1922, p. 71).   En
effet,  « le  peuplement  de  la  terre  surprend  tout  autant  par  son  irrégularité  que  par  sa  discontinuité.  Les
cartes  par  points  de  la  distribution  spatiale  de  la  population  n’évoquent-elles  pas  celle  du  ciel ?  Ici  une
étoile isolée, là un semis d’étoiles, ailleurs des nébuleuses, et surtout des vides, des vides à l’intérieur des
constellations,  des  vides  immenses  entre  les  constellations »  (Thumerelle,  1996,  p. 54).  Autrement  dit,
Pierre-Jean  Thumerelle  décrit  la  structure  fractale  intrinsèque  du  peuplement  à  l’échelle  planétaire.  La
géographie du peuplement ne peut donc s’étudier qu’à travers des niveaux géographiques (George, 1993 ;
Thumerelle, 1996).

Pierre  George  (1993)  en  identifie  trois  essentiels :  le  niveau  continental,  le  niveau  étatique  et  le
niveau local  autour  des relations ville-campagne. Pour Pierre-Jean Thumerelle,  « l’emboîtement  des éche-
lons  géographiques  ne  doit  pas  faire  illusion,  nul  ne  peut  faire  abstraction  des  seuils  spatiaux,  le  change-
ment d’échelle n’entraînant pas un effet de zoom. Autrement dit, on ne saurait sans risque déduire d’observa
tions  à  micro-échelle  des  principes  que  l’on  retrouverait  à  macro-échelle.  Les  mêmes  phénomènes  ne  se
manifestent ni avec la même intensité ni de la même manière, selon le niveau territorial auquel on se situe,
et  les  inerties  ne  sont  pas  les  mêmes »  (Thumerelle,  1996,  p. 61).  Il  est  donc  plus  prudent  que  Pierre
George,  car  il  refuse  de  définir  des  niveaux  caractéristiques.  C’est  également  le  cas  de  Guy Baudelle  qui
propose explicitement de construire une géographie du peuplement basée sur la nature fractale de celle-ci.
« Les hommes sont en effet presque tout et  le peuplement est  discontinu à toutes les échelles » (Baudelle,
2003, p. 31).

Celui qui a plus étudié les échelles de la population, est Hervé Le Bras (1993 ; 2000). Il montre que
les  grandes  échelles  géographiques  sont  moins  stables  que  les  petites,  ce  qui  se  comprend  très  bien.  Les
niveaux  planétaire  et  continental  sont  stables,  même  si  la  mobilité  est  forte  (Le  Bras,  1993,  p. 10).  Le
niveau étatique l’est  tout autant, si  l’on prend l’exemple de la France, les quatre grands foyers de peuple-
ment  ont  toujours  été  depuis,  au  moins,  le  Moyen  Âge :  Paris,  Lyon,  le  bassin  minier  du  Nord-Pas-de-
Calais, et  Marseille (Le Bras, 1993). Ainsi,  « Globalement la stabilité l’emporte nettement. La persistance
de  la  configuration  spatiale  et  hiérarchique  du  peuplement  est  même  une  caractéristique  majeure,  malgré
des bouleversements tels  que l’accroissement considérable de la population mondiale ou le passage d’une
économie agricole à une économie industrielle : dans le monde développé, les plus grandes villes d’aujourd-
’hui était déjà les plus grandes avant la révolution industrielle » (Baudelle, 2003, p. 186). Finalement, seuls
les niveaux très locaux sont instables.

Si  l’on  reprend,  la  position  de  Pierre-Jean  Thumerelle  (1996)  au  sujet  des  vides  et  des  pleins,  on
constate  un  accord  avec  l’opinion  d’Olivier  David  (2004)  qui  remarque  qu’il  n’existe  aucun  vide  absolu,
même parmi les déserts humains connus qu’ils soient blancs, secs, verts ou d’altitude (Baudelle, 2003). Le
concept d’œkoumène qui peut être identifié « au plein », est donc fractal, dans la mesure où il dépend d’une
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échelle  de  référence.  De  ce  fait,  « un  simple  changement  d’échelle  spatio-temporelle  d’observation  suffit
souvent  à  mettre  l’accent  sur  les  permanences  ou  au  contraire  sur  les  changements  et  fait  converger  ou
diverger  des  facteurs  explicatifs  de  toutes  origines » (Thumerelle,  1996,  p. 50).  Il  en  va de  même pour  le
concept de foyer de peuplement, car une nouvelle fois, le vide domine et structure le plein. En reprenant la
description de Daniel Noin (1979, Chapitre 5), il est possible d’établir les vides et les pleins de la planète.
C’est d’ailleurs ce portrait qui sera retenu pour le chapitre 17. Daniel Noin décompose le monde en quatre
zones : l’Eurasie, l’Amérique, l’Afrique et l’Océanie. Pour l’Eurasie, les vides correspondent à la toundra,
la taïga, le désert de Gobi, le plateau du Tibet, le Tian-Chan, l’Altaï et Bornéo. Pour l’Amérique, les vides
sont  plus  nombreux :  le  Canada,  le  Groenland,  les  Rocheuses,  l’Amazonie,  la  Patagonie  et  les  Andes
méridionales.  Pour  l’Afrique,  la  population  est  beaucoup  moins  concentrée  ;  seuls  deux  vides  sont  nota-
bles : le Sahara et le Kalahari. Pour l’Océanie, on peut prétendre que le vide est omniprésent par l’intermédi-
aire notamment de la Nouvelle-Guinée et le Bush australien, ainsi que de nombreuses îles inhabitées.

Pour  cette  analyse,  trois  niveaux,  liés  à la  nature  des  données  de  la  base  utilisée,  sont  retenus :  le
niveau planétaire (cf. chapitre 16), le niveau continental (cf. chapitre 17) et le niveau étatique (cf. chapitre
17), l’objectif  étant de montrer que « dans la morphologie du peuplement comme dans ses changements à
différentes échelles, l’espace est précisément structuré » (Le Bras, 1993, p. 207).
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16
Présentation de la base de données Tageo

Le  site  Tageo  regroupe  l’ensemble  des  données  disponibles  sur  la  population  de  chaque  État  du
monde  (soit  193).  Cette  base  présente  la  particularité  de  fournir  une  géolocalisation  ponctuelle  des  villes
administratives  où  la  population  a  été  recensée,  ce  qui  est  suffisant  pour  réaliser  une  étude  globale  de  la
structure  multi-échelle de  la  répartition de  l’établissement  humain à  l’échelle  planétaire,  l’objectif  n’étant
évidemment  pas  de  réaliser  une  nouvelle  base  de  données  analogue à  Geopolis  (Moriconi-Ébrard,  1994).
Ce chapitre détaillera la structure des données, et proposera une nouvelle interprétation des lois rang - taille
abondamment utilisées en géographie urbaine pour décrire le réseau inter-urbain en reprenant  des travaux
réalisés en 2007 (Forriez et Martin, 2007 ; Forriez et Martin, 2009).

16.1. Tageo, site des données de la loi rang - taille

Tageo se présente comme le site « officiel » (gratuit) de la loi rang - taille en géographie urbaine. Il
fournit pour les 193 États officiels du monde le classement de leurs villes définies par leur limite administra-
tive.  Au  maximum,  chaque  série  de  données  possède  300  lieux  par  État.  On  peut  donc,  sans  problème,
estimer un ajustement de type rang - taille sur ces listes. Toutefois, que valent réellement les informations
contenues dans cette base qui ne mentionne aucune de ses sources ?

16.1.1. La nature des données

Tageo  distingue  deux  informations :  celles  sur  le  classement  des  villes  par  État  et  celles  sur  la
population totale  de l’État  étudié.  Les données ont  été extraites  précisément  le  3  novembre 2009.  À cette
date, on a pu vérifier sur un nombre restreint d’État que beaucoup de classements correspondaient à ceux
des classements officiels, par exemple celui des Fiji est bien sur le site officiel de cet État. Autrement dit, la
base  comporte  des  données  qui  peuvent  être  temporellement  très  éloignés  d’un  classement  à  l’autre.  Par
exemple,  la  Chine n’a  pas  publié  de  données  officielles  depuis  1982  (Moriconi-Ébrard,  1994).  Le  classe-
ment  chinois  proposé  est  donc  surprenant  puisqu’il  n’intégre  ni  Macao,  ni  Hong  Kong.  L’ensemble  des
données  est  par  conséquent  très  hétéroclite  de  ce  point  de  vue.  Par  contre,  les  données  sur  la  population
totale de chaque État semblent correspondre à l’année en cours, puisque si on fait le total du nombre d’habi-
tants  sur  Terre,  on  trouve  6,5  milliards  d’habitants,  ce  qui  est  conforme  aux  estimations  officielles  de
l’ONU, mais il faut reconnaître que « malgré la présence d’un arsenal statistique puissant et de données très
riches  à  l’échelle  internationale,  il  n’existe  pas  d’inventaire  fiable  du  nombre  total  d’habitants  sur  la
planète » (David, 2004, p. 30). De plus, le positionnement des lieux cités dans la base est lui-même incom-
plet ;  il  manque 2 242 localisations sur  24 791.  Toutefois,  il  est  aujourd’hui  assez simple  de retrouver  les
villes manquantes, car Tageo donne les latitudes et les longitudes en coordonnées internationales.

Avant  tout  traitement,  il  faut  évidemment  préciser  les  objectifs  de  l’analyse  et  compléter  dans  la
mesure du possible cette base de données.

  253



16.1.2. L'objectif de l'analyse et les corrections apportées à la base

L’objectif  de  l’étude  menée  est  de  proposer  une  méthode  d’analyse  multi-échelle  en  couplant  la
géolocalisation des villes  et  leur  population respective.  Ainsi,  la  qualité  des  données au niveau du classe-
ment  rang - taille  de  chaque  État  importe  peu,  car  il  sera  toujours  possible  de  reprendre  l’outil  d’analyse
créé sur des données plus fiables. De ce point de vue, Tageo n’échappe pas aux différents reproches sur les
sources de données de la population urbaine formulés par François Moriconi-Ébrard (1994).

Il en existe trois principaux.

1. Les  découpages  administratifs,  utilisés  par  Tageo,  suivent  rarement  des  agglomérations
urbaines réelles.

2. Les  États  ont  chacun  leur  technique  de  comptage  et  leur  stratégie  de  publication  de  leur
population.  Concernant  le  comptage,  on  dénombre  trois  problèmes.  Tout  d’abord,  celui  de  la
répétitivité  dans  le  temps  des  recensements,  elle  est  très  irrégulière,  même  dans  les  États
développés.  Ensuite,  dans  certains  États,  et  particulièrement  ceux  d’Afrique  (Noin  et
Thumerelle,  1993 ;  Moriconi-Ébrard,  1994),  les  recensements et  les  registres d’état  civil  sont
réalisés  de  manière  très  approximative,  si  l’on  excepte  ceux  subventionnés  par  les  différents
organismes de l’ONU (Noin et Thumerelle, 1993). Enfin, dans certains États, comme la Chine,
les militaires présents  en un lieu ne sont  jamais comptés dans un recensement. De plus,  pour
les  publications,  beaucoup  d’État,  et  en  particulier  les  États  autoritaires  ou  en  voie  de
développement,  ne  publient  ou  ne  diffusent  aucune  de  leurs  données  officielles,  ce  qui  ne
facilite pas la recherche documentaire.

3. La  recherche  documentaire  est  un  réel  casse-tête.  Le  complément  sur  les  géolocalisations
apporté  illustre  bien  l’ensemble  des  problèmes  possibles  évoqués  par  François  Moriconi-
Ébrard (1994). Deux sources complémentaires ont été utilisées : la base de données de la CIA
(geonames.org) et celle de GoogleEarth.  Les 2 242 sites manquants ont systématiquement été
recherchés sur ces deux bases. Cela a permis de porter le nombre de sites marquants à 519. Ces
derniers permettent d’identifier deux problèmes : celui de la transcription des alphabets locaux
en  alphabet  latin  et  celui  des  changements  de  toponymes.  Le  premier  cas  est  typique  du
passage de l’alphabet arabe à l’alphabet latin. Sur les 519 sites manquants, 168 correspondent
à  des  toponymes  arabes  mal  transcrits  dans  la  base  Tageo,  dans  le  sens  où  elle  ne  fournit
qu’une  seule  graphie.  Les  autres  alphabets  (chinois,  cyrillique,  grec)  ont  été  moins
problématiques. Par contre, le problème des changements toponymiques s’est peu posé, car la
base de la CIA propose tous les anciens noms, ou tous les noms que peut porter une localité.

Pour conclure,  il  faut  une nouvelle fois  insister sur  le  fait  que l’objectif  de cette étude est  de pro-
poser une méthode d’analyse multi-échelle des villes localisées et de leur population respective. Ainsi, les
imperfections relevées sur les populations ne peuvent être de même nature de celles relevées sur les localisa-
tions. Que le nombre d’habitants d’une ville soit faux, c’est une chose, mais que sa localisation soit fausse
c’en  est  une  autre.  Étant  donné  que  l’analyse  du  chapitre  suivant  portera  essentiellement  sur  la  position
relative  des  lieux  cités  dans  la  base,  les  informations  incertaines  de  la  variable  « nombre  d’habitants » ne
devraient pas perturber la structure globale des résultats.

16.1.3. Le sens des variables utilisées

Avant d’effectuer une analyse rang - taille de chaque État, il faut préciser ce qu’apportent les deux
variables contenues dans la base Tageo afin d’éviter les erreurs d’interprétation.
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16.1.3.1. La variable « position »

La variable « position » a été rarement utilisée dans l’étude de la répartition de la population mondi-
ale.  En  effet,  elle  n’a  un  sens  que  si  elle  correspond  à  une  réelle  concentration  de  population  en  un  lieu
donné,  ce  qui  n’est  pas  toujours  le  cas  dans  de  nombreuses  entités  administratives.  Lorsque  le  nombre
d’habitants est peu important sur une étendue restreinte, la localisation par les limites administratives à un
sens,  mais  ceci  est  rarement  le  cas  pour  des  agglomérations  morphologiques  (cf.  chapitre  7),  où  la  limite
officielle n’intègre pas la population réellement concentrée en un lieu (Moriconi-Ébrard, 1994). Toutefois,
dans le chapitre 17, une méthode sera proposée pour corriger ce problème.

On  peut  également  ajouter  que  le  réseau  des  grandes  villes  à  l’échelle  mondiale  présente  des
« hiérachies  [qui]  sont  relativement  stables,  car  les  espaces  urbains  disposant  d’un  certain  poids  démo-
graphique  bénéficient  d’effets  d’inertie  ne  pouvant  se  modifier  que  lentement »  (Dumont,  2004,  p. 271).
Ainsi,  même si  les classements de ces positions par  l’intermédiaire du nombre d’habitants  varient  dans le
temps, ce n’est pas le cas des positions elles-mêmes qui peuvent être, certes, déclassées, mais elle se mainti-
ennent assez longtemps dans la hiérarchie urbaine. Les résultats présentés dans le chapitre 17 au niveau des
positions, sont donc structurels.
16.1.3.2. La variable « nombre d'habitants »

Dans ce  cadre,  « une population  se  définit  tout  simplement  comme étant  l’ensemble  des habitants
(domiciliés  à  leur  lieu  de  résidence  des  habitants  (domiciliés  à  leur  lieu  de  résidence  habituelle)  d’un
territoire donné » (Noin et Thumerelle, 1993, p. 18). Pour éviter toute confusion avec le sens statistique du
terme  « population »,  désormais,  il  sera  systématiquement  remplacé  par  l’expression  « nombre  d’habi-
tants ».  Son  intérêt  a  été  parfaitement  soulevé  par  François  Moriconi-Ébrard  (1994)  qui  écrivait  que  « la
variable « nombre d’habitants » revèle […] de l’évolution d’un système de peuplement qui transforme à de
multiples  échelles  et  tend  à  rassemble  une  humanité  de  plus  en  plus  nombreuse  dans  un  ensemble  para-
doxalement très sélectif de noyaux de peuplement. À cet égard, la ville apparaît comme le système d’organi-
sation  le  plus  rentable  que la  société  ait  inventé  pour  permettre  à  une population  nombreuse  de  vivre  sur
une surface de taille la plus réduite possible. [On peut remarquer qu’ici l’auteur décrit ici un processus de
fractalisation.]  La  variable  « nombre  d’habitants »  est  donc  particulièrement  appropriée  pour  mesurer  ces
processus,  dans  lesquels  la  ville  représente  davantage  un  moyen  d’investigation  que  la  finalité  d’une
recherche.  Les villes  peuvent  ainsi  être définies non  pas par  la  portée de leur  influence,  mais directement
par  cette  fonction  de  noyau  de  peuplement »  (Moriconi-Ébrard,  1994,  p. 13).  De  plus,  si  les  géolocalisa-
tions sont incomplètes, ce n’est nullement le cas de la variable « nombre d’habitants » qui présente une liste
continue de nombres, classée par ordre décroissant de la ville de rang 1 à celle du rang maximum connu.

Les  données  sont  donc de  qualité  suffisante  pour  proposer  une méthode d’analyse  multi-échelle  à
l’échelle  planétaire.  De  plus,  elles  permettent  d’obtenir  une  structure  rang - taille  qui  est  continue  sur  les
2 668 premières villes administratives à l’échelle du monde, mais également à l’échelle de chaque État (soit
193 mesures possibles).

16.2. Lois rang - taille à l'échelle étatique

Dans  cette  partie,  pour  des  raisons  pédagogiques,  seules  les  analyses  à  l’échelle  étatique  seront
traitées. Cela permettra d’effectuer un état des lieux sur les principales relations et interprétations existantes
des  lois  rang - taille  en  géographie  urbaine,  puis  de  vérifier  leur  validité  dans  chacun  des  classements  de
Tageo.
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16.2.1. État des lieux des connaissances concernant les lois rang - taille

Les lois rang - taille sont issues d’une série observations empiriques qui caractérise le réseau urbain
défini  comme  étant  la  « répartition  spatiale  des  villes  en  fonction  de  leur  organisation  hiérarchique »
(Guérin-Pace,  1993,  p. 4).  On  considère  George  Kingsley  Zipf  comme  le  père  de  cette  approche  (Zipf,
1941 ; Zipf, 1949). Ces lois se définissent par le fait « que l’on se place à l’échelle d’une région, d’un pays,
d’un  continent  ou  du  monde,  on constate  toujours  qu’il  existe un  petit  nombre de  petites  villes,  et  que  la
diminution du nombre des villes suit une progression géométrique à peu près régulière lorsqu’on considère
des catégories de taille de plus en plus élevée » (Pumain, 1982, p. 16). Autrement dit, il existe une relation
linéaire entre, dans un graphique bi logarithmique, le rang et le nombre d’habitants d’une structure adminis-
trative.  Cette dernière  précision est  indispensable  pour l’étude correcte de  la  base Tageo,  car  comme cela
était vu dans le chapitre 7, les limites administratives ne correspondent que très rarement aux limites mor-
phologiques d’une ville. Il est important de rappeler que le classement doit impérativement être décroissant,
sinon il est impossible d’établir une loi rang - taille (Clark, 1967).

D’ailleurs, la forme des distributions de la taille des villes change en fonction du choix des limites
spatiales d’un objet géographique. Ainsi, si  l’on étudie l’ensemble des agglomérations morphologiques, la
structure de la loi rang - taille ne sera pas forcément une droite. Ce fut le cas, par exemple, de la France où
l’on observait clairement un ajustement demi-parabolique (Laherrère, 1996). Ce résultat a été confirmé une
nouvelle  fois  à  l’échelle  du  monde à  partir  des données  de  l’ONU, soit  les  435  premières  conurbations  à
l’échelle du monde (Forriez et Martin, 2007 ; Forriez et Martin, 2009). Ainsi, plusieurs modèles ont pu être
proposés pour étudier les lois rang - taille d’une variable V quelconque (Figure 133). Il faut préciser que ces
dernières ressemblent aux lois de transformations d’échelle vues au chapitre 4, mais ce n’est qu’une analo-
gie où l’on rapproche le rang r d’une résolution ¶. Les lois rang - taille ne sont donc pas des lois fractales.
Toutefois, la loi de Zipf est l’équivalent d’une loi invariante d’échelle. Pour une parabole, on se trouve dans
le cas d’un modèle dépendant d’échelle plus complexe, où la dimension fractale varie elle-même en fonc-
tion  de  la  résolution.  À  chacun  de  ces  modèles,  il  est  possible  de  proposer  une  correction  log-périodique
permettant  un  meilleur  ajustement  des  données  par  rapport  à  ce  que l’on  observe,  à  savoir  des  paliers  de
populations.

Figure 133. Schéma des différentes lois rang - taille possibles (Forriez, Martin, 2009)
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Pour  éviter  de  confondre  lois  fractales  et  lois  rang - taille,  ce  texte  poursuivra  son  analyse  en
appelant  l’exposant  des lois  rang - taille :  q ;  le  rang r  et  le  nombre d’habitants  P.  Dans le cas linéaire,  la
relation observée dans un espace bi-logarithmique sera :

ln P = - q ln r + ln P0

ou, en loi de puissance,

P = P0 r-q.

De plus, contrairement aux graphiques de la Figure 133 et à la note de Denise Pumain (1982, p. 30-31), on
ne prendra plus l’inverse du rang,  car cette modification mathématique n’est pas nécessaire.  En effet,  elle
ne permet que d’obtenir un exposant q positif, au lieu d’être négatif.

Si  l’on  revient,  maintenant,  sur  l’ensemble  des  lois  possibles  observées,  il  faut  préciser  que  l’on
étudie toujours une loi rang - taille en analysant son espace bi logarithmique. C’est ce dernier, tout comme
dans le cas des lois fractales, qui permet d’estimer si l’on se trouve dans le cas linéaire, ou dans le cas demi-
parabolique, ou dans un cas inédit. Les potentialités des lois rang - taille sont donc largement à découvrir.

Quoi qu’il en soit, comme l’écrit François Moriconi-Ébrard, « un classement sur continuum statis-
tique du nombre d’habitants pourrait peut-être constituer un critère scientifique si on [le] mettait en relation
avec les structures de peuplement du pays : l’utilisation de la loi rang-taille pour un échantillon portant sur
la totalité des établissements humains d’une unité géographique donnée met en évidence un seuil de rupture
qui a été interprêté comme un seuil de démarcation entre le rural et l’urbain. […] Une définition qui s’ap-
puierait sur la rupture de ce continuum statistique pourrait traduire ce changement de nature dans l’organisa-
tion d’un système spatial, ou en respectant les spécificités nationales et régionales, à condition toutefois de
définir des limites spatiales homogènes pour chaque unité de peuplement » (Moriconi-Ébrard, 1994, p. 42).
Cependant,  le  rapprochement  entre  système  de  peuplement,  articulation  urbain-rural  et  répartition  dans
l’espace géographique semble tout de même périlleux. Il est vrai que les lois rang - taille sont porteuses de
toutes ces considérations, mais leur mise en correspondance se heurte aux lois fractales régissant au moins
l’articulation urbain-rural et la répartition de la population. Il ne serait donc guère étonnant que le système
de peuplement soit également régi par une structure multi-échelle. C’est ce que le chapitre suivant essayera
de prouver.

Avant de poursuivre l’analyse, le paragraphe suivant présentera rapidement les résultats obtenus des
lois rang - taille mesurées sur les distributions de taille des villes dans chacun des 193  États du monde.
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16.2.2. Présentation des résultats obtenus à partir des données Tageo

Figure 134-1. Tableau récapitulant les régressions linéaires effectuées dans l'espace bi logarithmique des rangs et du nombre d'habitants
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Figure 134-2. Tableau récapitulant les régressions linéaires effectuées dans l'espace bi logarithmique des rangs et du nombre d'habitants
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Figure 134-3. Tableau récapitulant les régressions linéaires effectuées dans l'espace bi logarithmique des rangs et du nombre d'habitants
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Figure 134-4. Tableau récapitulant les régressions linéaires effectuées dans l'espace bi logarithmique des rangs et du nombre d'habitants
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Figure 134-5. Tableau récapitulant les régressions linéaires effectuées dans l'espace bi logarithmique des rangs et du nombre d'habitants
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Figure 134-6. Tableau récapitulant les régressions linéaires effectuées dans l'espace bi logarithmique des rangs et du nombre d'habitants
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Figure 134-7. Tableau récapitulant les régressions linéaires effectuées dans l'espace bi logarithmique des rangs et du nombre d'habitants
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Figure 134-8. Tableau récapitulant les régressions linéaires effectuées dans l'espace bi logarithmique des rangs et du nombre d'habitants
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Figure 134-9. Tableau récapitulant les régressions linéaires effectuées dans l'espace bi logarithmique des rangs et du nombre d'habitants
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Figure 134-10. Tableau récapitulant les régressions linéaires effectuées dans l'espace bi logarithmique des rangs et du nombre d'habitants
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Figure 134-11. Tableau récapitulant les régressions linéaires effectuées dans l'espace bi logarithmique des rangs et du nombre d'habitants
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Figure 134-12. Tableau récapitulant les régressions linéaires effectuées dans l'espace bi logarithmique des rangs et du nombre d'habitants
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Figure 134-13. Tableau récapitulant les régressions linéaires effectuées dans l'espace bi logarithmique des rangs et du nombre d'habitants
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Figure 134-14. Tableau récapitulant les régressions linéaires effectuées dans l'espace bi logarithmique des rangs et du nombre d'habitants
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Figure 134-15. Tableau récapitulant les régressions linéaires effectuées dans l'espace bi logarithmique des rangs et du nombre d'habitants
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Figure 134-16. Tableau récapitulant les régressions linéaires effectuées dans l'espace bi logarithmique des rangs et du nombre d'habitants
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Figure 134-17. Tableau récapitulant les régressions linéaires effectuées dans l'espace bi logarithmique des rangs et du nombre d'habitants
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Figure 134-18. Tableau récapitulant les régressions linéaires effectuées dans l'espace bi logarithmique des rangs et du nombre d'habitants
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Figure 134-19. Tableau récapitulant les régressions linéaires effectuées dans l'espace bi logarithmique des rangs et du nombre d'habitants
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Figure 134-20. Tableau récapitulant les régressions linéaires effectuées dans l'espace bi logarithmique des rangs et du nombre d'habitants
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Figure 134-21. Tableau récapitulant les régressions linéaires effectuées dans l'espace bi logarithmique des rangs et du nombre d'habitants
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Figure 134-22. Tableau récapitulant les régressions linéaires effectuées dans l'espace bi logarithmique des rangs et du nombre d'habitants
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Figure 134-23. Tableau récapitulant les régressions linéaires effectuées dans l'espace bi logarithmique des rangs et du nombre d'habitants
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Figure 134-24. Tableau récapitulant les régressions linéaires effectuées dans l'espace bi logarithmique des rangs et du nombre d'habitants
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Figure 134-25. Tableau récapitulant les régressions linéaires effectuées dans l'espace bi logarithmique des rangs et du nombre d'habitants

La  Figure  134  illustre  l’ensemble  des  régressions  linéaires  calculées  avec  leurs  barres  d’erreur
respectives.  Désormais,  il  est  possible de réaliser  une statistique  sur  la  valeur  de la  pente à partir  des dif-
férentes  valeurs  de  q  estimées  pour  chacun  des  193  États  (Figure  135  et  Figure  136).  Une  nouvelle  con-
stante apparaît q = 1,2 ± 0,1. Ces résultats sont-ils significatifs ? En effet, il faut préciser que la base Tageo

permet  d’évaluer  la  structure  de  son  information.  On  sait  que  la  population  totale  articulée  dans  les  lois
rang - taille vaut à peu près 2 069 530 000 habitants ; dans cette même base, on sait que la population totale
du monde est évaluée à 6 689 330 000 d’habitants. Les lois présentées ne représentent alors que 31 % de la
population  mondiale.  De  plus,  la  signification  des  résultats  pour  chaque  État  dépend  explicitement  du
nombre d’implantations connues sur son territoire (Figure 137).  Dans le cas de la base Tageo,  ce nombre
correspond à l’échelon administratif  le plus bas (par exemple la commune pour la  France). On s’aperçoit,
tout  d’abord,  qu’il  existe des  pourcentages supérieurs à  100.  Cela s’explique par  le  fait  que  la population
totale  des  différents  États  du  monde est  publiée  de  manière  plus  récurrente  que la  hiérarchisation  de  leur
réseau  urbain.  Ce biais  n’apparaît  que  pour  des  États  de  petites  tailles  comme les  Bahamas,  Chypre,  Dji-
bouti,  le Liechtenstein, Monaco, le Monténégro ou le Vatican. Pour le reste, le taux varie entre 5 et  99 %
avec  une moyenne  arithmétique  de  55 %.  Il  est  évident  si  le  taux  est  supérieur  à  80 %,  ces  données  sont
vraisemblablement de même nature que les sept États cités précédemment. Seuls vingt États correspondent
à  ce  critère ;  on  y  trouve :  Andorre,  l’Arménie,  l’Australie,  le  Bahrain,  la  Belgique,  le  Chili,  la  Corée  du
Sud,  l’Estonie,  les  Îles  Marshall,  l’Islande,  Israël,  le  Koweit,  le  Luxembourg,  la  Macédoine,  Malte,  l’île
Maurice, la Nouvelle-Zélande, les Pays-Bas, Saint-Marin et les îles Samoa. Tous ces États ont pour particu-
larité d’avoir un territoire exigu, ce qui explique le taux très élevé par rapport à la moyenne, même si le non
renouvellement des données peut également être une explication. Pour les trente-huit États dont le taux est
entre 5 et 25 %, cela est dû réellement, pour la plupart, à une non publication des données, comme en Chine
ainsi que dans de nombreux pays d’Afrique par exemple. Ces critiques formulées, il reste tout de même 127
Etats  dont  le  taux  varie  entre  25  et  80 % qui  doivent  comporter  des  données  suffisamment  significatives
pour ne pas invalider la loi rang - taille estimée, soit 65 % de la base Tageo.
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Arrondi : 0,001

Moyenne : 1,177

Écart-type : 0,364

Erreur sur la moyenne : 0,026

Arrondi : 0,01

Moyenne : 1,18

Écart-type : 0,36

Erreur sur la moyenne : 0,03

Arrondi : 0,1

Moyenne : 1,2

Écart-type : 0,4

Erreur sur la moyenne : 0,1

Figure 135. Statistique de la pente q centrée et réduite
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État Pente

Erreur
sur la

pente

t de
Student

de la

pente

Ordonnée
Erreur sur
l'ordonné

t de

Student
de

l'ordonnée

Afghanistan -1.115 0.028 -40.483 14.143 0.107 131.588

Afrique du Sud -1.491 0.037 -40.332 16.921 0.177 95.525
Albanie -1.368 0.059 -23.112 13.462 0.2 67.451
Algérie -0.807 0.011 -76.655 14.303 0.051 282.183

Allemagne -0.789 0.003 -255.014 14.985 0.015 1006.47

Andorre -1.05 0.192 -5.481 10.223 0.263 38.851
Angola -1.264 0.048 -26.394 13.735 0.134 102.708

Antigua-et-Barbuda -1.136 0.133 -8.529 9.454 0.267 35.344
Arabie Saoudite -1.295 0.021 -62.401 15.527 0.065 240.227

Argentine -1.185 0.024 -49.992 15.738 0.086 184.002

Arménie -0.846 0.008 -105.838 12.066 0.038 313.707
Australie -1.339 0.023 -57.048 15.519 0.105 147.692
Autriche -0.739 0.01 -73.946 12.423 0.048 260.59

Azerbaïdjan -1.343 0.048 -27.7 14.595 0.213 68.466
Bahamas -2.272 0.14 -16.252 12.247 0.339 36.153
Bahrain -0.953 0.118 -8.097 12.205 0.205 59.498

Bangladesh -0.904 0.012 -77.541 14.686 0.049 300.913
Barbade -1.859 0.238 -7.827 10.378 0.414 25.076
Belgique -0.624 0.005 -114.205 12.863 0.026 489.147

Belize -1.02 0.092 -11.096 10.707 0.145 73.928
Bénin -1.257 0.053 -23.902 13.914 0.143 97.54

Bhoutan -1.508 0.066 -22.85 11.408 0.149 76.49
Biélorussie -1.282 0.023 -56.71 14.692 0.085 172.339
Birmanie -0.92 0.048 -18.998 14.202 0.163 87.005
Bolivie -1.391 0.016 -87.353 14.386 0.064 223.967

Bosnie-Herzegovine -0.775 0.01 -79.395 12.178 0.045 273.368
Botswana -0.999 0.006 -159.063 12.334 0.03 408.017

Brésil -0.85 0.004 -226.033 16.154 0.018 891.99
Bruneï -1.651 0.475 -3.473 11.474 0.529 21.678

Bulgarie -1.227 0.017 -71.968 14.437 0.078 184.145
Burkina Faso -1.203 0.059 -20.317 13.116 0.186 70.659

Burundi -1.236 0.094 -13.084 12.312 0.19 64.935
Cambodge -1.549 0.065 -23.984 13.746 0.156 87.844

Cameroun -1.214 0.035 -34.564 14.798 0.128 116.002
Canada -1.25 0.003 -394.482 15.747 0.015 1032.65

Cap Vert -1.518 0.128 -11.846 11.654 0.271 42.966
Chili -1.152 0.021 -54.673 15.224 0.101 150.147
Chine -0.857 0.009 -95.552 16.952 0.043 392.494

Chypre -1.42 0.015 -93.863 13.046 0.073 179.149

Figure 136-1. Tableau récapitulant l'ensemble des pentes q et des ordonnées estimées
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État Pente

Erreur
sur la

pente

t de
Student

de la

pente

Ordonnée
Erreur sur
l'ordonné

t de

Student
de

l'ordonnée

Vatican 0. 0. 0. 0. 0. 0.
Colombie -1.15 0.004 -257.972 15.782 0.021 735.419
Comores -0.897 0.059 -15.164 11.046 0.066 167.673
Congo -1.776 0.074 -23.993 13.818 0.197 70.3

Congo Zaïre -1.285 0.017 -75.722 15.543 0.067 231.3
Corée du Nord -1.056 0.1 -10.532 14.71 0.201 73.057
Corée du Sud -1.358 0.013 -103.512 16.669 0.053 314.583

Costa Rica -1.075 0.039 -27.85 13.407 0.173 77.389
Côte d'Ivoire -1.089 0.031 -34.961 14.292 0.11 130.501

Croatie -0.949 0.004 -219.68 12.733 0.021 612.522
Cuba -1.162 0.032 -36.23 14.76 0.131 112.496

Danemark -0.982 0.005 -195.738 13.204 0.024 546.664
Djibouti -2.378 0.417 -5.701 12.905 0.464 27.784

Dominique -1.106 0.086 -12.789 9.703 0.203 47.855

Égypte -1.036 0.013 -77.601 15.367 0.059 261.761

Émirats Arabes Unis -1.649 0.232 -7.108 14.329 0.366 39.187

Équateur -1.25 0.015 -81.691 14.618 0.06 245.367

Érythrée -1.274 0.084 -15.241 12.229 0.181 67.494

Espagne -0.852 0.005 -180.455 14.895 0.023 655.235
Estonie -1.121 0.007 -164.766 12.075 0.033 368.771

États-Unis -0.732 0.003 -265.047 15.577 0.013 1171.81

Éthiopie -0.908 0.016 -58.134 13.62 0.064 213.663

Fiji -2.147 0.165 -13.032 13.046 0.393 33.198

Finlande -0.9 0.014 -62.832 13.301 0.054 245.572
France -0.651 0.003 -196.547 13.836 0.016 868.008
Gabon -1.468 0.052 -28.098 12.774 0.145 88.366

Gambie -1.292 0.035 -36.643 12.357 0.08 155.024
Georgie -1.422 0.06 -23.65 13.963 0.233 59.884
Ghana -1.104 0.031 -36.143 14.068 0.107 131.94
Grèce -1.027 0.014 -74.491 14.282 0.066 215.133

Grenade -0.86 0.133 -6.475 8.561 0.182 46.922
Guatemala -1.03 0.015 -70.631 13.85 0.07 197.287

Guinée -1.464 0.073 -20.102 13.815 0.207 66.746
Guinée équatoriale -1.994 0.134 -14.871 12.028 0.277 43.471

Guinée-Bissau -1.278 0.216 -5.911 11.538 0.421 27.394
Guyana -1.917 0.047 -40.904 12.459 0.139 89.9

Haïti -1.562 0.034 -46.102 14.064 0.096 146.018
Honduras -0.96 0.006 -161.489 12.705 0.029 443.943
Hongrie -0.864 0.005 -167.626 13.443 0.025 541.617

Figure 136-2. Tableau récapitulant l'ensemble des pentes q et des ordonnées estimées
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État Pente

Erreur
sur la

pente

t de
Student

de la

pente

Ordonnée
Erreur sur
l'ordonné

t de

Student
de

l'ordonnée

Îles Marshall -1.843 0.064 -28.99 11.355 0.267 42.488

Îles Solomon -2.265 0.151 -14.993 10.794 0.238 45.343
Inde -0.842 0.004 -229.856 16.689 0.018 946.734

Indonésie -0.889 0.004 -232.288 15.66 0.018 850.279
Iraq -1.481 0.033 -44.478 16.153 0.119 136.121
Iran -1.074 0.017 -64.052 15.932 0.079 202.011

Irlande -1.111 0.015 -72.65 12.968 0.064 202.882
Islande -1.716 0.046 -37.168 12.397 0.175 70.858
Israël -1.28 0.024 -53.712 14.959 0.109 137.586
Italie -0.696 0.004 -164.55 14.218 0.02 697.821

Jamaïque -1.65 0.047 -35.326 13.303 0.117 114.105

Japon -0.778 0.005 -162.54 15.767 0.023 684.634
Jordanie -1.01 0.005 -188.558 13.518 0.023 585.216

Kazakhstan -1.045 0.017 -60.82 14.41 0.072 198.906
Kenya -1.302 0.043 -30.202 14.505 0.178 81.341

Kirgyzstan -0.871 0.021 -41.733 12.584 0.077 163.783

Kiribati -1.46 0.184 -7.945 10.319 0.445 23.168
Koweit -1.125 0.073 -15.496 13.52 0.25 54.107
Laos -0.924 0.083 -11.195 11.94 0.197 60.644

Lesotho -1.233 0.105 -11.734 11.735 0.183 64.108
Lettonie -1.397 0.029 -47.681 13.255 0.103 129.135
Liban -1.668 0.077 -21.549 13.962 0.171 81.433

Liberia -1.281 0.118 -10.824 12.204 0.256 47.6
Libye -1.275 0.071 -17.833 14.386 0.213 67.575

Liechtenstein -0.901 0.234 -3.851 9.25 0.408 22.695
Lituanie -1.495 0.041 -36.032 14.197 0.16 88.822

Luxembourg -1.027 0.009 -109.646 11.326 0.045 251.253
Macédoine -1.227 0.045 -27.223 13.546 0.176 77.029
Madagascar -0.766 0.026 -29.066 12.952 0.091 142.848

Malaisie -1.133 0.017 -68.659 15.325 0.07 218.094
Malawi -1.434 0.077 -18.737 13.334 0.21 63.61

Maldives -0.885 0.022 -40.987 10.38 0.096 108.682
Mali -1.328 0.056 -23.84 13.55 0.158 85.573
Malte -0.881 0.065 -13.593 11.155 0.218 51.067
Maroc -1.336 0.018 -73.857 15.664 0.073 213.169

Maurice -0.987 0.022 -43.94 12.322 0.092 133.865
Mauritanie -1.376 0.077 -17.778 12.874 0.175 73.601
Mexique -1.095 0.012 -91.15 16.542 0.058 286.046

Micronésie -1.055 0.072 -14.707 10.063 0.09 112.008

Figure 136-3. Tableau récapitulant l'ensemble des pentes q et des ordonnées estimées
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État Pente

Erreur
sur la

pente

t de
Student

de la

pente

Ordonnée
Erreur sur
l'ordonné

t de

Student
de

l'ordonnée

Moldavie -1.078 0.041 -26.112 12.95 0.116 111.329
Monaco -1.879 0.623 -3.017 10.06 0.592 17.008

Mongolie -0.962 0.084 -11.509 12.394 0.206 60.303

Montenegro -1.073 0.016 -67.971 14.095 0.073 191.846
Mozambique -1.471 0.063 -23.304 14.786 0.189 78.127

Namibie -1.131 0.043 -26.095 12.205 0.124 98.207
Nauru 0. 0. 0. 0. 0. 0.
Népal -0.899 0.034 -26.802 13.35 0.112 118.993

Nicaragua -1.121 0.021 -53.41 13.439 0.073 184.724
Niger -1.155 0.032 -36.08 13.2 0.1 131.563

Nigeria -1.097 0.008 -140.583 16.281 0.038 433.388

Norvège -1.063 0.003 -314.122 13.237 0.016 812.442
Nouvelle-Zélande -1.634 0.014 -119.596 15.091 0.065 233.346

Oman -0.669 0.052 -12.933 12.753 0.129 98.862
Ouganda -1.021 0.044 -23.175 13.347 0.161 82.919

Ouzbekistan -0.962 0.009 -108.011 14.245 0.039 366.423
Pakistan -0.992 0.005 -193.598 15.624 0.025 633.605

Palau -1.798 0.122 -14.69 8.829 0.259 34.077
Panama -1.447 0.032 -45.045 13.353 0.112 119.038

Papouasie - Nouvelle-Guinée -1.422 0.078 -18.323 12.664 0.222 56.928

Paraguay -1.515 0.024 -62.905 14.72 0.11 134.157
Pays-Bas -0.689 0.003 -208.503 13.701 0.016 861.008

Pérou -1.158 0.005 -215.543 15.08 0.026 582.938
Philippines -0.872 0.025 -35.388 14.825 0.097 152.233

Pologne -0.882 0.004 -229.76 14.716 0.018 796.077
Portugal -0.733 0.004 -186.398 12.966 0.019 684.795

Qatar -2.086 0.131 -15.888 12.875 0.247 52.046
Centrafrique -0.919 0.041 -22.481 12.528 0.121 103.601

République dominicaine -1.233 0.029 -43.103 14.107 0.092 153.176

Roumanie -0.961 0.007 -137.536 14.391 0.034 427.938
Royaume-Uni -0.698 0.005 -127.529 14.473 0.026 549.355

Russie -0.896 0.008 -110.372 16.098 0.039 411.823
Rwanda -1.323 0.154 -8.587 12.226 0.28 43.7

Saint-Kitts-et-Nevis -0.908 0.105 -8.669 8.516 0.222 38.425
Saint-Marin -1.231 0.115 -10.705 9.43 0.181 52.026

Saint-Vincent-et-les-Grenadines -1.249 0.187 -6.663 9.059 0.312 29.061
Sainte-Lucie -1.629 0.316 -5.156 10.029 0.574 17.474

Salvador -1.383 0.033 -42.469 14.272 0.126 112.995
Samoa -0.936 0.033 -28.463 10.171 0.154 65.84

Figure 136-4. Tableau récapitulant l'ensemble des pentes q et des ordonnées estimées
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État Pente

Erreur
sur la

pente

t de
Student

de la

pente

Ordonnée
Erreur sur
l'ordonné

t de

Student
de

l'ordonnée

Sao-Tomé-et-Principe -1.718 0.367 -4.675 10.918 0.46 23.724

Sénégal -1.426 0.028 -50.062 14.453 0.094 153.795
Serbie -1.073 0.016 -67.971 14.095 0.073 191.846

Seychelles -1.568 0.341 -4.6 9.79 0.38 25.789
Sierra Leone -1.414 0.045 -31.239 13.211 0.123 107.634

Singapour 0. 0. 0. 0. 0. 0.

Slovaquie -0.945 0.012 -78.093 13.179 0.051 256.487
Slovénie -0.926 0.004 -227.74 11.839 0.019 619.506
Somalie -1.376 0.046 -29.984 14.442 0.152 94.929
Soudan -1.246 0.02 -63.434 15.118 0.08 189.799

Sri Lanka -1.105 0.073 -15.034 14.015 0.256 54.819
Suède -0.882 0.011 -78.109 13.42 0.043 310.749
Suisse -0.658 0.005 -137.9 12.339 0.023 537.524

Suriname -1.55 0.127 -12.206 11.458 0.247 46.331
Swaziland -1.229 0.045 -27.172 11.467 0.119 96.585

Syrie -1.235 0.018 -69.88 14.808 0.055 270.609
Tadjikistan -1.129 0.036 -31.208 13.054 0.129 101.247

Taïwan -1.082 0.03 -35.715 15.264 0.113 134.546
Tanzanie -0.698 0.007 -101.838 13.422 0.033 406.778

Tchad -1.166 0.068 -17.093 12.966 0.21 61.727
Tchéquie -0.902 0.005 -193.79 13.582 0.022 606.493
Thaïlande -0.819 0.007 -114.646 14.059 0.034 408.86

Togo -1.023 0.055 -18.702 12.612 0.14 89.941
Tonga -1.278 0.146 -8.758 9.795 0.23 42.61

Trinité-et-Torbago -1.146 0.086 -13.247 11.792 0.203 58.139
Tunisie -1.054 0.02 -52.545 14.23 0.094 152.12

Turkménistan -1.001 0.017 -59.82 13.066 0.054 241.232
Turquie -0.978 0.004 -242.556 15.606 0.019 804.242
Tuvalu -1.059 0.205 -5.175 7.911 0.303 26.127
Ukraine -1.039 0.005 -191.197 15.471 0.026 591.231
Uruguay -0.97 0.046 -20.952 12.963 0.133 97.644

Vanuatu -1.865 0.13 -14.357 10.416 0.192 54.195
Venezuela -1.011 0.017 -58.664 15.24 0.066 232.224
Viêt-nam -1.086 0.026 -42.01 14.84 0.088 169.537

Yemen -1.538 0.056 -27.448 14.685 0.161 91.416
Zambie -1.451 0.033 -43.352 14.492 0.116 125.421

Zimbabwe -1.599 0.027 -58.379 14.66 0.076 191.732

Figure 136-5. Tableau récapitulant l'ensemble des pentes q et des ordonnées estimées
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État
Population totale

de la loi rang-taille

Population

totale

Rapport

en %

Afghanistan 6 359 700 32 738 376 19
Afrique du Sud 24 748 890 48 782 756 51

Albanie 1 426 888 3 619 778 39
Algérie 16 885 300 33 769 668 50

Allemagne 37 308 000 82 369 552 45
Andorre 67 600 82 627 82
Angola 3 871 500 12 531 357 31

Antigua-et-Barbuda 44 289 84 522 52
Arabie Saoudite 14 976 300 28 146 656 53

Argentine 27 785 600 40 677 350 68
Arménie 2 628 400 2 968 589 89
Australie 18 164 577 21 007 310 86
Autriche 4 731 500 8 205 533 58

Azerbaïdjan 4 178 606 8 177 717 51

Bahamas 312 652 307 451 102
Bahrain 618 100 718 306 86

Bangladesh 21 830 400 153 546 896 14
Barbade 112 604 281 968 40
Belgique 8 684 900 10 403 951 83

Belize 129 800 301 270 43
Bénin 2 867 900 8 532 547 34

Bhoutan 197 900 682 321 29
Biélorussie 6 444 400 9 685 768 67
Birmanie 10 971 000 47 758 180 23
Bolivie 5 536 800 9 247 816 60

Bosnie-Herzegovine 2 751 900 4 590 310 60

Botswana 1 450 646 1 842 323 79
Brésil 96 893 900 196 342 592 49
Bruneï 154 100 381 371 40

Bulgarie 5 186 381 7 262 675 71
Burkina Faso 2 112 500 15 264 735 14

Burundi 656 200 8 691 005 8
Cambodge 2 070 800 14 241 640 15
Cameroun 7 637 400 18 467 692 41

Canada 23 378 800 33 212 696 70
Cap Vert 247 096 426 998 58

Chili 15 141 900 16 454 143 92
Chine 193 511 700 1 330 044 544 15

Chypre 870 824 792 604 110

Figure 137-1. Comparaison entre la population totale de la loi rang - taille et de la population totale respective
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État
Population totale

de la loi rang-taille

Population

totale

Rapport

en %

Vatican 878 824 107
Colombie 29 867 900 45 013 672 66
Comores 152 900 731 775 21
Congo 2 218 300 3 903 318 57

Congo Zaïre 17 639 200 66 514 504 27

Corée du Nord 7 815 300 23 479 088 33
Corée du Sud 38 903 800 48 379 392 80

Costa Rica 2 488 675 4 195 914 59
Côte d'Ivoire 8 057 900 20 179 602 40

Croatie 2 826 700 4 491 543 63
Cuba 8 626 500 11 423 952 76

Danemark 3 904 800 5 484 723 71
Djibouti 716 800 506 221 142

Dominique 54 378 72 514 75

Égypte 29 445 000 81 713 520 36

Émirats Arabes Unis 2 651 900 4 621 399 57

Équateur 7 454 600 13 927 650 54

Érythrée 687 400 5 502 026 12

Espagne 27 259 100 40 491 052 67
Estonie 1 108 432 1 307 605 85

États-Unis 83 522 300 303 824 640 27

Éthiopie 7 103 300 82 544 840 9

Fiji 394 083 931 741 42
Finlande 3 779 700 5 244 749 72
France 20 024 500 64 057 792 31
Gabon 1 100 200 1 485 832 74

Gambie 602 600 1 735 464 35
Georgie 2 516 182 4 630 841 54

Ghana 5 505 300 23 382 848 24
Grèce 7 388 800 10 722 816 69

Grenade 15 023 90 343 17
Guatemala 5 465 000 13 002 206 42

Guinée 2 967 800 9 806 509 30
Guinée équatoriale 237 915 616 459 39

Guinée-Bissau 423 600 1 503 182 28
Guyana 382 548 770 794 50

Haïti 2 708 400 8 924 553 30
Honduras 2 644 700 7 639 327 35
Hongrie 6 993 700 9 930 915 70

Figure 137-2. Comparaison entre la population totale de la loi rang - taille et de la population totale respective
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État
Population totale

de la loi rang-taille

Population

totale

Rapport

en %

Îles Marshall 54 616 63 174 86

Îles Solomon 72 263 581 318 12
Inde 167 237 700 1 147 995 904 15

Indonésie 57 374 300 237 512 352 24
Iraq 19 337 500 28 221 180 69
Iran 37 823 200 65 875 224 57

Irlande 2 355 300 4 156 119 57
Islande 275 651 304 367 91
Israël 6 329 200 7 112 359 89
Italie 25 549 200 58 145 320 44

Jamaïque 1 154 500 2 804 332 41
Japon 84 151 500 127 288 416 66

Jordanie 4 826 700 6 198 677 78
Kazakhstan 8 475 700 15 340 533 55

Kenya 6 218 637 37 953 840 16
Kirgyzstan 2 498 800 5 356 869 47

Kiribati 76 497 110 356 69
Koweit 2 260 525 2 596 799 87

Laos 660 000 6 677 534 10
Lesotho 324 400 2 128 180 15
Lettonie 1 486 508 2 245 423 66

Liban 2 147 300 3 971 941 54
Liberia 805 000 3 334 587 24
Libye 4 431 700 6 173 579 72

Liechtenstein 34 873 34 498 101
Lituanie 2 330 139 3 565 205 65

Luxembourg 434 725 486 006 89
Macédoine 2 033 215 2 061 315 99
Madagascar 4 049 200 20 042 552 20

Malaisie 14 906 700 25 274 132 59
Malawi 1 652 000 13 931 831 12

Maldives 283 101 385 925 73
Mali 2 107 800 12 324 029 17
Malte 383 009 403 532 95
Maroc 15 158 600 34 343 220 44

Maurice 1 234 914 1 274 189 97
Mauritanie 1 154 200 3 364 940 34
Mexique 59 189 500 109 955 400 54

Micronésie 55 300 107 665 51

Figure 137-3. Comparaison entre la population totale de la loi rang - taille et de la population totale respective
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État
Population totale

de la loi rang-taille

Population

totale

Rapport

en %

Moldavie 1 885 500 4 324 450 44
Monaco 33 300 32 796 102

Mongolie 1 436 400 2 996 081 48
Montenegro 5 785 800 678 177 853

Mozambique 4 671 400 21 284 700 22
Namibie 706 900 2 088 669 34
Nauru 5100 13 770 37
Népal 3 577 200 29 519 114 12

Nicaragua 2 906 400 5 785 846 50

Niger 2 038 100 13 272 679 15
Nigeria 50 440 000 146 255 312 34
Norvège 3 207 200 4 644 457 69

Nouvelle-Zélande 3 338 779 4 173 460 80
Oman 2 207 100 3 311 640 67

Ouganda 3 384 200 31 367 972 11
Ouzbekistan 10 212 700 27 345 026 37

Pakistan 47 436 700 172 800 048 27
Palau 15 507 21 093 74

Panama 1 446 696 3 309 679 44
Papouasie - Nouvelle-Guinée 740 046 5 931 769 12

Paraguay 3 108 226 6 831 306 45

Pays-Bas 14 303 600 16 645 313 86
Pérou 19 146 300 29 180 900 66

Philippines 25 685 600 96 061 680 27
Pologne 19 964 000 38 500 696 52

Portugal 6 006 600 10 676 910 56
Qatar 620 200 824 789 75

Centrafrique 1 665 300 4 444 330 37
République dominicaine 4 926 400 9 507 133 52

Roumanie 11 907 900 22 246 862 54
Royaume-Uni 35 223 800 60 943 912 58

Russie 77 400 900 140 702 096 55
Rwanda 543 200 10 186 063 5

Saint-Kitts-et-Nevis 24 593 39 817 62
Saint-Marin 28 059 29 973 94

Saint-Vincent-et-les-Grenadines 27 212 118 432 23
Sainte-Lucie 36 123 159 585 23

Salvador 2 981 003 7 066 403 42
Samoa 180 735 217 083 83

Figure 137-4. Comparaison entre la population totale de la loi rang - taille et de la population totale respective
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État
Population totale

de la loi rang-taille

Population

totale

Rapport

en %

Sao-Tomé-et-Principe 91 600 206 178 44
Sénégal 5 100 700 12 853 259 40

Serbie 5 785 800 10 159 046 57
Seychelles 35 800 82 247 44

Sierra Leone 1 776 300 6 294 774 28
Singapour 3 499 500 4 608 167 76
Slovaquie 3 157 600 5 455 407 58

Slovénie 1 142 101 2 007 711 57
Somalie 4 035 900 9 558 666 42
Soudan 11 235 400 40 218 456 28

Sri Lanka 4 078 000 21 128 772 19
Suède 5 122 600 9 045 389 57
Suisse 4 360 700 7 581 520 58

Suriname 292 400 475 996 61
Swaziland 301 000 1 128 814 27

Syrie 8 339 400 19 747 586 42
Tadjikistan 1 824 482 7 211 884 25

Taïwan 16 332 100 22 920 946 71
Tanzanie 12 555 500 40 213 160 31

Tchad 1 656 065 10 111 337 16
Tchéquie 6 617 600 10 220 911 65

Thaïlande 16 688 000 66 493 296 25
Togo 1 433 800 5 858 673 24
Tonga 43 795 119 009 37

Trinité-et-Torbago 372 100 1 231 323 30

Tunisie 6 258 893 10 383 577 60
Turkménistan 2 470 300 5 179 571 48

Turquie 43 410 900 71 892 808 60
Tuvalu 8285 12 177 68
Ukraine 25 932 800 45 994 288 56
Uruguay 2 619 200 3 477 778 75
Vanuatu 55 991 215 446 26

Venezuela 19 266 900 26 414 816 73
Viêt-nam 11 760 100 86 116 560 14

Yemen 4 452 600 23 013 376 19
Zambie 3 912 900 11 669 534 34

Zimbabwe 4 712 400 11 350 111 42

Figure 137-5. Comparaison entre la population totale de la loi rang - taille et de la population totale respective

La structure des résultats obtenus ayant été critiquée, on peut désormais proposer une interprétation
des lois rang - taille à l’échelle de chacun des 193 États du monde.
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16.2.3. Interprétations de ces résultats

Pour  George  Kingsley  Zipf  (1941 ;  1949),  le  modèle  linéaire  ne  s’applique  que  dans  le  cas  d’un
réseau urbain possédant une certaine épaisseur historique, à l’instar de celui qui a été constitué par le réseau
des châteaux (cf. chapitres 10 à 14). Les résultats précédents montrent qu’il s’agit  d’un modèle générique
que l’on peut établir pour n’importe quelle entité spatiale. En effet, que l’État possède un petit territoire ou
un  territoire  immense,  que  l’État  soit  séculaire  ou  pluri-millénaire,  la  même loi  rang - taille  caractérise  le
réseau urbain de chacun des 193 États de la planète. Cependant, on peut reprendre l’interprétation de Colin
Grant Clark (1967) au sujet de ce qui deviendra les lois rang - taille non linéaires pour analyser les données
Tageo. Ce dernier avait évoqué la possibilité que les lois rang - taille puissent correspondre à trois types de
distributions possibles, tout d’abord, ce qu’il avait appelé la « situation de primatie », où les grandes villes
possédent une taille disproportionnée par rapport aux autres. Ensuite, il y avait la « situation oligarchique »
où les villes moyennes étaient surreprésentées, et enfin, le cas de la « situation anti-primatiale » où les plus
grandes villes étaient sous représentées, ce qui est  le cas des données Tageo  puisque les grandes villes ne
sont représentées que par le nombre d’habitants au sein de la limite administrative officielle.

La  correspondance  entre  espace  géographique  et  lois  rang - taille  est  loin  d’être  évidente.  Leslie
Curry (1964) précisait qu’il en existait deux grandes familles. La première est l’approche « fonctionnelle »,
la seconde, l’approche « génétique ». L’approche « fonctionnelle » essaye de combiner les lois rang - taille
avec  la  théorie  des  lieux  centraux  (Christaller,  1933 ;  Losch,  1940).  Elle  montre  qu’une  loi  rang - taille
linéaire est la stucture que l’on rencontre la plus souvent. Toutefois, si l’on observe bien cette relation, dans
de  nombreux  cas,  des  paliers  existent,  paliers  qui  renvoient  à  une  structure  log-périodique  (Forriez  et
Martin,  2007 ;  Forriez  et  Martin,  2009).  Ce  constat  n’est  qu’un  élément  supplémentaire  permettant  de
prouver  que  cette  régression  linéaire  contraint  de  manière  géométrique  la  répartition  des  localités  dans
l’espace géographique. Chaque palier correspond alors aux nombres possibles de villes possédant le même
nombre  d’habitants.  De  plus,  il  a  été  montré  que  le  réseau  urbain  de  Walter  Christaller  était  un  modèle
fractal  (Le  Bras,  2000).  Cependant,  comme  l’écrit  Denise  Pumain  (1982),  cette  approche  comporte  de
nombreuses boîtes noires. La question est donc loin d’être tranchée aujourd’hui (Pumain, 2006).

L’approche « génétique » tente d’établir  un lien entre les  processus de croissance et la distribution
de  la  taille  des  villes.  De  nombreux  modèles  ont  été  proposés  pour  essayer  de  comprendre  la  croissance
physique  de  la  ville  en  fonction  des  lois  rang - taille.  Le  plus  célèbre  est  le  modèle  de  croissance
allométrique.  Le  principe  est  simple :  ce  type  de  croissance  caractérise  la  constance  du  rapport  entre  des
mesures de nature différente effectuées sur un même objet (Pumain, 1982). Dans le cas des agglomérations,
l’étude établit via un modèle de loi de puissance, la dépendance explicite entre la croissance de la surface S
de  l’agglomération  et  la  croissance  de  la  population  P  contenue  dans  celle-ci.  Le  modèle  le  plus  simple
s’écrit :

S = gPa

où g  et  a  sont  des constantes contingentes  à l’objet  d’étude.  a  est  ce que l’on appelle le  coefficient  d’al-
lométrie (Batty, Longley, 1994 ; Bejan, Lorente, 2004).

Les  méthodes  et  les  techniques  divergent,  mais  la  question  fondamentale  soulevée  par  ces  deux
approches est, au fond, d’établir une liaison entre le « système des localisations » et le « système de peuple-
ment ».  Malgré  tous  les  travaux  existants,  ce  lien  n’a  jamais  pu  être  construit  de  manière  strictement
formelle (Pumain, 1982 ; 2006).
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Enfin,  il  faut  préciser  que les distributions de probabilité  ont  été rarement  étudiées en géographie.
Pourtant,  « la  forme  donnée  par  Zipf  à  la  loi  rang - taille  ne  diffère  qu’en  apparence  d’une  fonction  de
répartition » (Pumain, 1982, p. 25). Toutefois, ce n’en est pas une. En effet, si le modèle est linéaire, le lien
entre la loi rang - taille et la distribution de probabilité est direct. Ainsi, l’exposant a de Pareto, caractéris-
tique essentielle des distributions parétiennes, correspond à l’inverse de  l’exposant  q  des lois rang - taille
(Guérin-Pace,  1993,  p. 44).  Cependant,  cette  relation  biunivoque  n’existe  plus,  s’il  s’agit  d’un  modèle
polynomial. Il est par conséquent difficile de conclure quoi que ce soit sur les relations entre les lois rang -
taille  et  les  distributions  statistiques  qu’elles  engendrent.  Il  est  donc  nécessaire  d’utiliser  en  complément
des lois rang - taille leurs distributions statistiques respectives.

16.3. Les statistiques parétiennes et les lois rang - taille

Denise  Pumain  (1982,  p. 26-27)  avait  bien  mis  en  garde  sur  le  fait  qu’il  existait  une  différence
fondamentale entre les distributions statistiques et les lois rang - taille. En effet, une distribution statistique
se  réalise  par  la  mise  en  correspondance  de  la  variable  étudiée  (ici  le  nombre  d’habitants)  avec  l’effectif
mesuré.  Pour  établir  clairement  ces  lois,  il  faut  donc  nécessairement  imposer  un  intervalle  permettant  de
lisser  les  variables  étudiées.  A  contrario,  la  loi  rang - taille  étudie  la  correspondance  entre  un  rang  et  un
nombre  d’habitants ;  le  lissage  n’est  donc  pas  indispensable  dans  ce  cas.  De  plus,  Denise  Pumain  (1982)
avait effectué un état des lieux des lois statistiques possibles pour qualifier les lois rang - taille. Son raison-
nement avait abouti à l’exclusion totale de la loi normale de Gauss-Laplace et à une hésitation entre la loi
log-normale (ou de Galton ou de Gibrat)  et  les  lois  parétiennes. Cette partie va montrer que,  pour la base
Tageo, ce doute est entièrement levé en faveur des lois parétiennes.

16.3.1. Les lois parétiennes

Il  est  difficile  de présenter  rapidement  les  lois  parétiennes,  dues à Vilfredo Pareto (1896),  car peu
d’ouvrages de synthèse en français existent (Zajdenweber, 1976 ; Zajdenweber, 2009). Cela est sans doute
dû au fait que les caractéristiques de cette loi sont quelque peu déconcertantes. Il s’agit d’une loi puissance
caractérisée  par  l’exposant  a  de  Pareto.  Cette  distribution  est  donc  extrêmement  dissymétrique.  Les
paramètres  classiques  que sont  la  moyenne et  la  variance  n’existent  pas  forcément.  Pour  que  la  moyenne
existe,  il  faut  que  l’exposant  a  de  Pareto  soit  strictement  supérieur  à  1.  De  même,  pour  que  la  variance
existe,  il  faut  que  l’exposant  a  de  Pareto  soit  strictement  supérieur  à  2.  Cela  signifie  que  les  valeurs
extrêmes ont une probabilité plus élevée que dans la distribution de Gauss-Laplace de se réaliser.

Formellement, la distribution s’écrit :

Pr(X ¥ x) = CHx ê x0L-a
où X est une variable aléatoire, x0 la valeur minimale et C un facteur d’échelle (Zajdenweber, 1976 ; Zajden-
weber, 2009). De plus, ses paramètres s’estiment par les formules suivantes (Zajdenweber, 1976 ; Zajdenwe-
ber, 2009) :

E(X) = 
a
a-1

x0 si a > 1

V(X) = 
a

Ha-1L2 Ha-2L x0
2 si a > 2

où E est l’espérance et V la variance.

La  loi  de  Pareto  se  décline  plus  précisément  en  deux  catégories :  d’une  part,  les  lois  parétiennes
fortes, d’autre part, les lois parétiennes faibles. Les lois fortes correspondent à la loi de Pareto décrite dans
le  paragraphe  précédent.  Les  lois  faibles  (Mandelbrot,  1963)  ne  se  définissent  que  par  un  comportement
asymptotique au niveau de la queue de distribution. Formellement, cela s’écrit :

Pr(X ¥ x) ö CHx ê x0L-a
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Daniel  Zajdenweber  (1976)  précise  qu’il  est  possible  de  confondre  la  distribution  « asymptotiquement
parétienne » avec la distribution log-normale, ce qui légitimise le fait que Denise Pumain (1982) s’interroge
sur la nature statistique des distributions rang - taille. Toutefois, dans le cas de la base Tageo, on rencontre
plutôt la loi forte de Pareto.

16.3.2. Les distributions des lois rang - taille

Une mesure systématique des exposants de Pareto a réalisée sur chacun des États de la base Tageo.
Cette estimation ne peut se faire que par l’établissement d’une régression linéaire dans l’espace bi-logarith-
mique  du  nombre  d’habitants  et  celui  de  leur  effectif  statistique  respectif,  l’exposant  a  de  Pareto  corre-
spond  alors  à  la  pente  de  la  droite  observée.  La  Figure  138  montre  toutes  les  distributions  statistiques
observées  pour  chaque  État.  Dans  le  cas  d’une  telle  distribution  la  moyenne  arithmétique  et  l’écart-type
indiqués  sur  ces  graphiques  n’ont  aucune  signification.  D’ailleurs  beaucoup  de  graphiques  possèdent  une
valeur nulle au niveau de ces paramètres. Enfin, le pas a été indiqué ; il correspond à l’intervalle de lissage
permettant  d’établir  de  manière  lisible  la  distribution  observée.  Parmi  toutes  celles-ci,  seuls  vingt-quatre
États  possèdent  une  distribution  non  parétienne.  Il  s’agit  une  nouvelle  fois  des  États  ayant  un  petit  terri-
toire :  Andorre,  Bahrain,  Belize,  Bruneï,  Cap  Vert,  Vatican,  Comores,  Corée  du  Nord,  Djibouti,
Dominique, Émirats Arabes Unis, Grenade, les Îles Salomon, le Liechtenstein, la Micronésie, Oman, Saint-
Marin,  Sainte-Lucie,  Sao-Tomé-et-Principe,  les  Seychelles,  Singapour,  Nauru,  Tuvalu  et  Vanuatu.  Pour
l’ensemble  de  ces  Etats,  l’exposant  a  de  Pareto  est  nul  ou  très  proche  de  zéro  (Figure  140),  ce  qui  ne
devrait pas perturber l’analyse statistique de a.
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Figure 138-1. Distributions parétiennes observées pour chacun des États du monde
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Figure 138-2. Distributions parétiennes observées pour chacun des États du monde
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Figure 138-3. Distributions parétiennes observées pour chacun des États du monde
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Figure 138-4. Distributions parétiennes observées pour chacun des États du monde
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Figure 138-5. Distributions parétiennes observées pour chacun des États du monde
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Figure 138-6. Distributions parétiennes observées pour chacun des États du monde
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Figure 138-7. Distributions parétiennes observées pour chacun des États du monde
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Figure 138-8. Distributions parétiennes observées pour chacun des États du monde
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Figure 138-9. Distributions parétiennes observées pour chacun des États du monde
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Figure 138-10. Distributions parétiennes observées pour chacun des États du monde
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Figure 138-11. Distributions parétiennes observées pour chacun des États du monde
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Figure 138-12. Distributions parétiennes observées pour chacun des États du monde

308   



Figure 138-13. Distributions parétiennes observées pour chacun des États du monde
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Figure 138-14. Distributions parétiennes observées pour chacun des États du monde
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Figure 138-15. Distributions parétiennes observées pour chacun des États du monde
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Figure 138-16. Distributions parétiennes observées pour chacun des États du monde
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Figure 138-17. Distributions parétiennes observées pour chacun des États du monde
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Figure 138-18. Distributions parétiennes observées pour chacun des États du monde
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Figure 138-19. Distributions parétiennes observées pour chacun des États du monde
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Figure 138-20. Distributions parétiennes observées pour chacun des États du monde
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Figure 138-21. Distributions parétiennes observées pour chacun des États du monde
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Figure 138-22. Distributions parétiennes observées pour chacun des États du monde
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Figure 138-23. Distributions parétiennes observées pour chacun des États du monde
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Figure 138-24. Distributions parétiennes observées pour chacun des États du monde
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Figure 138-25. Distributions parétiennes observées pour chacun des États du monde

On peut dès lors, comme avec la pente q, estimer la valeur moyenne du nombre a de Pareto (Figure
139  et  Figure  140) :  a = 0,811 ± 0,032.  Il  faut  rappeler  que  q = 1,117 ± 0,026.  Même  si  les  valeurs  sont
incompatibles, elles sont du même ordre de grandeur. D’autant plus que l’erreur sur les coefficients est plus
élévé dans le cas de l’estimation de a par rapport à celui de q. Dans le cas de l’Afghanistan, par exemple,
q = 1,115 ± 0,028  et  a = 1,168 ± 0,397,  ou  encore  dans  celui  de  l’Afrique  du  Sud,  q = 1,491 ± 0,037  et
a = 1,376 ± 0,209, on remarque que q  est systématiquement dans les barres d’erreur de a,  ou plus exacte-

ment de 
1
a

. Toutefois, il existe des exceptions qui correspondent une nouvelle fois aux États dont le terri-

toire est petit. Ces réserves formulées, ces estimations ont établi que, pour que l’exposant q de la loi rang -
taille  corresponde  à  l’exposant  a  de  Pareto,  deux  conditions  sont  nécessaires.  (1)  Aucun  doublon  ne  doit
existait  dans  la  série  des  données ;  un  simple  lissage  permet  d’éviter  ce  désagrément  en  début  de  série
(grandes villes),  mais il  est  inévitable en fin  de  série (petites  villes).  (2)  Il  faut  qu’il  existe un ajustement
linéaire  dans  l’espace  bi-logarithmique de  la  loi  rang - taille.  Si  c’est  deux  conditions  ne  sont  pas  respec-
tées, il faut impérativement établir en plus de la loi rang - taille, sa distribution statistique, comme cela sera

montré dans le chapitre suivant, et dans ce cas q = 
1
a

 (Guérin-Pace, 1993, p. 44).
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Arrondi : 0,001

Moyenne : 0,811

Écart-type : 0,444

Erreur sur la moyenne : 0,032

Arrondi : 0,01

Moyenne : 0,81

Écart-type : 0,44

Erreur sur la moyenne : 0,03

Arrondi : 0,1

Moyenne : 0,8

Écart-type : 0,4

Erreur sur la moyenne : 0,1

Figure 139. Distributions statistiques de l'exposant a de Pareto
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État
Nombre a

de Pareto

Erreur

sur le
nombre de Pareto

t de
Student

du
nombre

de
Pareto

Ordonnée
Erreur sur
l'ordonné

t de

Student
de

l'ordonnée

Afghanistan -1.168 0.397 -2.944 16.519 5.219 3.165
Afrique du Sud -1.376 0.209 -6.574 19.998 2.85 7.017

Albanie -0.933 0.236 -3.947 11.096 2.643 4.198
Algérie -1.86 0.46 -4.047 25.923 6.049 4.286

Allemagne -1.511 0.23 -6.557 21.957 3.115 7.05
Andorre 0. 0. Indeterminate 0. 0. Indeterminate
Angola -0.814 0.344 -2.366 11.769 4.555 2.584

Antigua-et-Barbuda -0.277 0.279 -0.991 3.002 2.402 1.249

Arabie Saoudite -0.82 0.16 -5.139 11.972 2.171 5.514
Argentine -0.692 0.179 -3.874 10.369 2.458 4.219
Arménie -0.896 0.297 -3.019 11.432 3.387 3.375
Australie -1.059 0.226 -4.676 15.508 3.118 4.974
Autriche -1.527 0.607 -2.517 21.429 7.914 2.708

Azerbaïdjan -0.96 0.174 -5.527 12.472 2.005 6.219
Bahamas -0.646 0.395 -1.634 7.704 4.371 1.762
Bahrain -0.404 0.113 -3.581 4.743 1.262 3.758

Bangladesh -1.057 0.221 -4.793 15.827 3.036 5.214

Barbade -0.305 0.182 -1.674 3.404 1.747 1.949
Belgique -1.19 0.232 -5.128 15.194 2.729 5.568

Belize -0.185 0.156 -1.187 2.088 1.514 1.379
Bénin -0.537 0.117 -4.602 6.826 1.37 4.982

Bhoutan -0.431 0.109 -3.944 4.539 1.038 4.371
Biélorussie -1.391 0.308 -4.524 19.358 4.024 4.811
Birmanie -0.877 0.264 -3.319 13.016 3.577 3.639
Bolivie -0.717 0.147 -4.875 9.368 1.769 5.295

Bosnie-Herzegovine -1.137 0.254 -4.474 14.045 2.9 4.843
Botswana -1.605 0.301 -5.33 18.861 3.295 5.724

Brésil -1.209 0.19 -6.364 18.109 2.69 6.733
Bruneï 0. 0. Indeterminate 0. 0. Indeterminate

Bulgarie -1.042 0.166 -6.28 13.204 1.93 6.843

Burkina Faso -0.533 0.188 -2.832 6.988 2.155 3.242
Burundi -0.446 0.171 -2.612 5.597 1.918 2.918

Cambodge -0.25 0.134 -1.863 3.306 1.547 2.137
Cameroun -0.682 0.105 -6.504 9.047 1.256 7.201

Canada -1.126 0.255 -4.407 16.499 3.496 4.719
Cap Vert -0.113 0.093 -1.215 1.351 0.876 1.542

Chili -1.214 0.323 -3.757 18.03 4.325 4.169
Chine -1.128 0.137 -8.222 17.428 1.975 8.822

Chypre -1.333 0.461 -2.893 15.563 5.057 3.078

Figure 140-1. La valeur numérique des exposants a de Pareto obtenu
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État
Nombre a

de Pareto

Erreur

sur le
nombre de Pareto

t de
Student

du
nombre

de
Pareto

Ordonnée
Erreur sur
l'ordonné

t de

Student
de

l'ordonnée

Vatican 0. 0. 0. 0. 0. 0.
Colombie -1.148 0.237 -4.849 16.917 3.258 5.192
Comores 0. 0. Indeterminate 0. 0. Indeterminate
Congo -0.456 0.131 -3.466 6.173 1.543 3.999

Congo Zaïre -0.931 0.247 -3.764 13.629 3.376 4.037
Corée du Nord -0.322 0.215 -1.496 4.863 2.911 1.671
Corée du Sud -0.845 0.148 -5.718 12.678 2.054 6.172

Costa Rica -1.373 0.325 -4.226 16.848 3.577 4.71
Côte d'Ivoire -1.028 0.254 -4.05 15.146 3.403 4.451

Croatie -1.113 0.246 -4.52 13.764 2.796 4.923
Cuba -1.353 0.336 -4.03 19.262 4.421 4.357

Danemark -1.029 0.238 -4.325 13.074 2.732 4.785
Djibouti -0.076 0.097 -0.784 1.015 1.128 0.9

Dominique -0.558 0.191 -2.926 5.622 1.627 3.456

Égypte -0.988 0.198 -4.98 14.916 2.742 5.439

Émirats Arabes Unis 0. 0. Indeterminate 0. 0. Indeterminate

Équateur -1.223 0.32 -3.825 17.413 4.248 4.099

Érythrée -0.254 0.235 -1.081 3.217 2.6 1.237

Espagne -1.54 0.319 -4.828 21.915 4.284 5.115

Estonie -1.183 0.375 -3.158 14.223 4.186 3.398

États-Unis -1.319 0.208 -6.35 19.727 2.915 6.768

Éthiopie -1.07 0.499 -2.144 15.367 6.601 2.328

Fiji -0.764 0.151 -5.055 9.034 1.634 5.527
Finlande -1.138 0.187 -6.086 14.109 2.177 6.481
France -1.7 0.338 -5.025 24.111 4.466 5.398
Gabon -0.562 0.207 -2.717 7.113 2.336 3.044

Gambie -0.339 0.265 -1.282 4.095 2.904 1.41
Georgie -0.833 0.207 -4.028 10.536 2.382 4.423
Ghana -1.35 0.269 -5.014 19.046 3.561 5.348
Grèce -1.245 0.187 -6.663 15.735 2.158 7.29

Grenade -0.164 0.168 -0.974 1.368 1.307 1.047
Guatemala -1.068 0.202 -5.286 13.603 2.337 5.821

Guinée -1.046 0.106 -9.896 15.162 1.402 10.815
Guinée équatoriale -0.163 0.092 -1.769 1.801 0.866 2.078

Guinée-Bissau -0.239 0.354 -0.675 3.103 3.919 0.792
Guyana -0.87 0.352 -2.47 10.302 3.858 2.67

Haïti -0.365 0.142 -2.57 4.754 1.657 2.87
Honduras -1.222 0.255 -4.801 14.816 2.891 5.126
Hongrie -1.623 0.406 -3.995 23.119 5.319 4.346

Figure 140-2. La valeur numérique des exposants a de Pareto obtenu
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État
Nombre a

de Pareto

Erreur

sur le
nombre de Pareto

t de
Student

du
nombre

de
Pareto

Ordonnée
Erreur sur
l'ordonné

t de

Student
de

l'ordonnée

Îles Marshall -1.242 0.464 -2.678 11.916 4.047 2.944

Îles Solomon -0.194 0.098 -1.985 1.98 0.88 2.25
Inde -1.052 0.15 -6.997 16.287 2.157 7.552

Indonésie -1.086 0.168 -6.482 16.403 2.329 7.044
Iraq -0.806 0.181 -4.442 11.747 2.473 4.751

Iran -1.163 0.222 -5.233 17.114 3.053 5.605
Irlande -0.867 0.258 -3.362 11.054 2.958 3.737
Islande -0.711 0.189 -3.755 7.252 1.753 4.137
Israël -1.208 0.14 -8.604 15.138 1.642 9.219
Italie -1.649 0.3 -5.504 23.28 4.026 5.782

Jamaïque -0.505 0.162 -3.115 6.21 1.842 3.37
Japon -1.3 0.244 -5.329 19.275 3.425 5.628

Jordanie -0.818 0.184 -4.443 10.543 2.148 4.908
Kazakhstan -0.754 0.151 -5.005 9.707 1.795 5.409

Kenya -1.137 0.412 -2.761 16.12 5.461 2.952

Kirgyzstan -0.489 0.27 -1.81 6.386 3.073 2.078
Kiribati -0.482 0.177 -2.722 5.084 1.558 3.263
Koweit -1.091 0.158 -6.895 13.235 1.76 7.522

Laos -0.475 0.259 -1.833 5.724 2.82 2.03
Lesotho -0.641 0.145 -4.412 7.724 1.602 4.821
Lettonie -0.752 0.225 -3.346 9.277 2.529 3.668

Liban -0.326 0.106 -3.068 4.21 1.253 3.36
Liberia -0.243 0.241 -1.009 3.231 2.688 1.202
Libye -0.414 0.129 -3.22 5.533 1.516 3.649

Liechtenstein 0. 0. Indeterminate 0. 0. Indeterminate
Lituanie -0.945 0.194 -4.864 11.713 2.229 5.255

Luxembourg -1.143 0.208 -5.505 11.89 1.897 6.269

Macédoine -1.049 0.229 -4.587 12.86 2.559 5.026
Madagascar -0.605 0.225 -2.695 7.848 2.637 2.976

Malaisie -0.85 0.116 -7.308 11.124 1.418 7.843
Malawi -0.546 0.157 -3.474 7.034 1.807 3.893

Maldives -0.967 0.31 -3.114 9.862 2.799 3.524
Mali -0.468 0.144 -3.246 6.078 1.651 3.681
Malte -0.579 0.189 -3.064 6.22 1.704 3.651
Maroc -1.054 0.27 -3.907 15.076 3.641 4.141

Maurice -0.572 0.136 -4.202 6.563 1.324 4.957
Mauritanie -0.206 0.174 -1.182 2.667 1.957 1.362
Mexique -1.206 0.184 -6.548 18.051 2.541 7.104

Micronésie 0. 0. Indeterminate 0. 0. Indeterminate

Figure 140-3. La valeur numérique des exposants a de Pareto obtenu
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État
Nombre a

de Pareto

Erreur

sur le
nombre de Pareto

t de
Student

du
nombre

de
Pareto

Ordonnée
Erreur sur
l'ordonné

t de

Student
de

l'ordonnée

Moldavie -0.656 0.189 -3.478 8.319 2.202 3.777
Monaco 0. 0. Indeterminate 0. 0. Indeterminate

Mongolie -0.431 0.209 -2.067 5.808 2.409 2.411
Montenegro -1.07 0.19 -5.646 13.564 2.198 6.172
Mozambique -0.52 0.131 -3.979 6.753 1.574 4.29

Namibie -0.838 0.168 -4.979 10.317 1.838 5.613
Nauru 0. 0. 0. 0. 0. 0.
Népal -0.772 0.151 -5.126 9.911 1.74 5.694

Nicaragua -0.592 0.178 -3.319 7.713 2.047 3.768
Niger -0.609 0.176 -3.468 7.833 2.009 3.899

Nigeria -1.116 0.164 -6.818 16.858 2.27 7.426
Norvège -1.08 0.248 -4.363 13.302 2.84 4.685

Nouvelle-Zélande -1.166 0.198 -5.887 14.295 2.273 6.289
Oman -0.307 0.275 -1.115 4.027 3.177 1.267

Ouganda -0.633 0.177 -3.579 8.37 2.018 4.148

Ouzbekistan -1.362 0.299 -4.554 19.566 3.936 4.971
Pakistan -0.944 0.226 -4.168 14.118 3.159 4.47

Palau -0.286 0.137 -2.089 2.446 0.965 2.533
Panama -0.794 0.222 -3.58 9.605 2.499 3.844

Papouasie - Nouvelle-Guinée -0.785 0.249 -3.157 9.519 2.749 3.463
Paraguay -1.052 0.217 -4.857 12.905 2.492 5.179
Pays-Bas -1.434 0.17 -8.45 18.341 2.025 9.057

Pérou -0.935 0.295 -3.174 13.906 4.006 3.472
Philippines -0.776 0.254 -3.056 11.816 3.463 3.412

Pologne -1.833 0.301 -6.092 25.689 3.971 6.469
Portugal -1.376 0.296 -4.643 17.065 3.42 4.99

Qatar -0.361 0.158 -2.291 4.443 1.765 2.517
Centrafrique -0.666 0.184 -3.619 8.613 2.097 4.106

République dominicaine -1.052 0.311 -3.382 15.017 4.112 3.652
Roumanie -1.632 0.254 -6.433 23.436 3.322 7.055

Royaume-Uni -1.132 0.271 -4.174 17.015 3.688 4.614
Russie -1.097 0.227 -4.835 16.666 3.17 5.257

Rwanda -0.434 0.081 -5.338 5.487 0.912 6.019
Saint-Kitts-et-Nevis -0.23 0.116 -1.982 2.058 0.851 2.418

Saint-Marin 0. 0. Indeterminate 0. 0. Indeterminate
Saint-Vincent-et-les-Grenadines -0.588 0.444 -1.325 5.717 3.951 1.447

Sainte-Lucie -0.045 0.044 -1.007 0.403 0.347 1.159
Salvador -0.952 0.151 -6.323 11.987 1.723 6.958
Samoa -1.26 0.368 -3.428 12.776 3.229 3.957

Figure 140-4. La valeur numérique des exposants a de Pareto obtenu
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État
Nombre a

de Pareto

Erreur

sur le
nombre de Pareto

t de
Student

du
nombre

de
Pareto

Ordonnée
Erreur sur
l'ordonné

t de

Student
de

l'ordonnée

Sao-Tomé-et-Principe -0.089 0.195 -0.454 1.073 1.897 0.566
Sénégal -0.938 0.257 -3.646 13.598 3.396 4.004
Serbie -1.07 0.19 -5.646 13.564 2.198 6.172

Seychelles -0.342 0.236 -1.449 3.432 2.191 1.566

Sierra Leone -0.453 0.173 -2.612 5.938 1.994 2.978
Singapour 0. 0. 0. 0. 0. 0.
Slovaquie -1.17 0.225 -5.198 14.487 2.533 5.719
Slovénie -1.37 0.401 -3.419 16.323 4.401 3.709
Somalie -0.536 0.132 -4.05 6.912 1.542 4.482
Soudan -1.279 0.253 -5.046 18.106 3.39 5.341

Sri Lanka -0.698 0.146 -4.786 8.892 1.677 5.303
Suède -0.807 0.174 -4.643 10.477 2.04 5.136
Suisse -1.493 0.384 -3.891 18.054 4.388 4.114

Suriname -0.54 0.234 -2.314 6.511 2.547 2.556
Swaziland -0.382 0.109 -3.497 4.119 1.031 3.996

Syrie -1.068 0.217 -4.915 15.079 2.905 5.19

Tadjikistan -0.833 0.21 -3.976 10.404 2.357 4.415
Taïwan -1.247 0.217 -5.742 17.846 2.912 6.128

Tanzanie -1.39 0.385 -3.609 19.928 5.078 3.924
Tchad -0.668 0.175 -3.822 8.493 1.984 4.282

Tchéquie -0.992 0.188 -5.269 12.891 2.183 5.905
Thaïlande -1.143 0.303 -3.769 17.357 4.098 4.235

Togo -0.491 0.217 -2.263 6.143 2.48 2.477

Tonga -0.318 0.047 -6.74 3.254 0.417 7.807
Trinité-et-Torbago -0.364 0.119 -3.061 3.863 1.176 3.285

Tunisie -1.249 0.151 -8.259 15.84 1.746 9.073
Turkménistan -0.767 0.187 -4.104 9.697 2.175 4.459

Turquie -1.042 0.228 -4.563 15.435 3.161 4.883

Tuvalu -0.185 0.195 -0.951 1.606 1.388 1.157
Ukraine -1.599 0.27 -5.926 22.712 3.625 6.266
Uruguay -0.454 0.155 -2.935 6.098 1.789 3.408
Vanuatu -0.268 0.184 -1.454 2.667 1.688 1.58

Venezuela -1.32 0.168 -7.878 18.873 2.259 8.353
Viêt-nam -0.924 0.253 -3.651 13.27 3.391 3.913

Yemen -1.056 0.313 -3.379 14.51 4.106 3.534
Zambie -0.623 0.133 -4.682 7.967 1.559 5.11

Zimbabwe -0.918 0.236 -3.894 12.968 3.128 4.146

Figure 140-5. La valeur numérique des exposants a de Pareto obtenu
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Au cours de ce chapitre, il a été montré, successivement à partir des données de la base Tageo, que
l’on  pouvait  réaliser  une  étude  complète  des  lois  rang - taille  et  des  distributions  parétiennes  établies  à
l’échelle étatique. Toutefois, ces analyses n’ont utilisé que le modèle linéaire sur des échantillons relative-
ment limités en effectif puisqu’en règle générale les 300 premiers ne permettent pas d’étudier la totalité du
réseau urbain sur un territoire donné. Ce chapitre fut l’occasion de rappeler à quelles conditions l’exposant
q des lois rang - taille pouvait être équivalent à l’exposant a de Pareto. Dans ce type d’étude, la distinction
entre les deux est nécessaire d’un point de vue pédogagique, mais pas d’un point de vue analytique puisque
l’exposant q est, en règle générale, plus précis que l’exposant a de Pareto. Toutefois, ce n’est pas toujours
le cas, comme cela sera montré dans le chapitre suivant.

De plus, il a été également rappelé que le lien entre les lois rang - taille et l’analyse spatiale est loin
d’être  évident.  À  part  en  passant  par  l’intermédiaire  de  la  théorie  des  lieux  centraux,  il  est  difficile  de
percevoir  le  moindre  rapport  dans  une  répartition  de  lieux  et  la  loi  rang - taille  lui  correspondant.  Le
chapitre  suivant  essayera  de  proposer  une solution  à  ce problème ainsi  qu’à  un  ensemble  de  quatre  ques-
tions résumant la problématique de la distribution des tailles de villes formulée par Denise Pumain (1982).
(1)  Quelle  est  la  forme  de  la  distribution  des  tailles  de  villes  dans  des  systèmes  urbains  divers ?  (2)  De
quelles distributions statistiques peut-elle être rapprochée, et par quelles méthodes ? (3) Quelles interpréta-
tions  théoriques  ont  été  proposées  pour  expliquer  les  régularités  observées ?  (4)  Quel  rapport  existe-t-il
entre ces formes de distribution de taille des villes et les processus de croissance qui les engendrent ? Des
réponses sensiblement  différentes  à celles  de cette  auteure ont  pu être  proposées aux  interrogations  (1)  et
(2).  Tout  d’abord,  la  distribution  des  tailles  de  villes  correspond,  lorsque  l’on  possède  un  échantillon  de
données  de  taille  suffisante,  à  une  simple  régression  linéaire  qui  peut  dans  ce  cas  être  rapprochée  de  la
distribution  statistique  parétienne.  Cela  revient  à  prétendre  que  la  distribution  log-normale  est  exception-
nelle de ce point de vue. À la fin de ce chapitre, aucune réponse n’a été apportée aux questions (3) et (4).

Enfin, il reste le délicat problème de la correspondance entre répartition des lieux et loi rang - taille
correspondante.  Si  l’analyse  fractale  des  châteaux  a  pu  établir  la  fractalité  d’un  nuage  de  points,  il  est
logique de penser  que la distribution de la répartition de la population à l’échelle du monde le soit  égale-
ment.  Ainsi,  on  doit  pouvoir  conduire  une  analyse  analogue  à  celle  des  châteaux  sur  la  répartition
ponctuelle de l’établissement  humain à l’échelle planétaire. Cependant,  peut-on montrer  la  fractalité de la
structure  statistique  du  nombre  d’habitants ?  Quelques  pistes  ont  été  lancées  dans  ce  chapitre.  Dans  le
suivant, il faudra les poursuivre et établir cette fractalité.
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17
Structure multi-échelle de la répartition de la 
population

La loi rang - taille, à l’échelle de chaque État, peut facilement être étendue à l’échelle du monde ou
à  l’échelle  continentale.  Il  en  est  de  même  pour  les  distributions  parétiennes  observées,  ce  qui  permettra
d’étudier ces lois avec un effectif beaucoup plus important, car l’échantillon n’est plus limité à 300 valeurs.
À  ces  deux  analyses,  ce  chapitre  se  propose  d’introduire  une  dimension  spatiale  en  calculant  des  dimen-
sions fractales de la répartition de l’établissement humain à l’échelle planétaire ou continentale.

17.1. À l'échelle du monde

À l’échelle du monde, la répartition des habitants est contrainte par la position des trois océans, et,
dans une moindre mesure, par les milieux climatiques, le domaine privilégié étant la  zone tempérée et par
les grands massifs (Figure 141), comme cela a largement été évoqué dans le chapitre 15. Une nouvelle fois,
l’analyse  des  données  Tageo  révèle  une  structure  très  riche.  Dans  un  premier  temps,  l’étude des  données
brutes permettra de poser les différentes techniques et méthodes. Chemin faisant, cela conduira à étudier la
répartition de lieux et les distributions parétiennes en fonction d’un seuil de population.

17.1.1. Données brutes

La  méthode  des  lois  rang - taille  ayant  été  détaillée  dans  le  chapitre  précédent,  ce  paragraphe
débutera  par  l’explication  de  la  méthode  de  calcul  d’une  dimension  fractale  à  l’échelle  planétaire.  Une
nouvelle  fois,  la  méthode  de  calcul  retenue  est  celle  du  comptage  de  boîtes  carrées  sur  un  planisphère
représentant la répartition des géolocalisations de la base Tageo (Figure 141). La représentation retenue est
une carte par points qui est la plus efficace pour percevoir les vides et les pleins du peuplement de la Terre
(Noin et Thumerelle, 1993, p. 43).

Figure 141. Répartition des géolocalisations de la base Tageo
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17.1.1.1. Analyse fractale globale de la répartition de l'établissement humain à l'échelle planétaire

La structure d’un planisphère est telle que deux biais apparaissent dans l’estimation de la dimension
fractale par comptage de boîtes carrées. Le premier concerne sa forme : le planisphère est clairement rectan-
gulaire  dans  le  sens  où  l’on  peut  y  placer  deux  carrés  d’environ  20 000 km  de  côté  (dans  le  cas  d’une
projection cylindrique). Ainsi,  si  le carré mesurant  la dimension fractale possède un côté dont  la taille est
supérieure à 20 000 km, il comptera systématiquement deux carrés. Ce biais est dû au fait que l’on travaille
sur un objet qui, normalement, s’organise en trois dimensions (latitude, longitude, altitude) avec une projec-
tion  en deux  dimensions.  Ainsi,  le  calcul  d’une dimension  fractale  par  comptage de  boîtes cubiques  évit-
erait  ces  deux  biais.  Toutefois,  pour  ne  pas  compliquer  davantage  le  problème,  dans  tout  ce  chapitre,  les
dimensions  fractales  continueront  à  être  mesurées  sur  des  objets  en  deux  dimensions.  Le  biais  dû  à  la
courbure  de  la  Terre  est  donc  systématiquement  prégnant  dans  toutes  les  analyses  fractales  qui  vont  être
réalisées, ce qui ne devrait pas poser problèmes pour interpréter les résultats.

Figure 142. Analyse fractale globale de la répartition de l’établissement humain à l’échelle planétaire

Remarque importante. Dans toutes les figures de ce chapitre, il existe une véritable « zone de transition » beaucoup plus importante que sur les autres
cas  présents  dans  cette  thèse.  Ainsi,  dans  ce  chapitre,  les  échelles  de  coupure  établies  sur  les  graphiques  ne  correspondent  pas  à  l’échelle  de
transition, mais à l’échelle à partir de laquelle la dimension fractale devient constante. Dans le cas de la figure 142, la zone de transition commence
vers ln(¶) = 2,5 et s’achève vers ln(¶) = 5,5 (l’échelle de coupure retenue).

Nombre de localisation 24 272

Échantillon 98 % de la base de données

Nombre d'habitants 2 069 530 000

Échelle de coupure 245 km

Échelle maximale 16 318 km

Dimension fractale 1,512 ≤ 0,003

Figure 143. Paramètres de la structure fractale globale de la répartition de l’établissement humain à l’échelle planétaire
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La Figure 142 et la Figure 143 présentent les résultats obtenus à partir de la Figure 141. Une nou-
velle fois, la loi obtenue est une loi du type transition fractal - non fractal. Les deux régimes se distinguent
clairement.  D’une  part,  on  observe  un  régime  où  la  dimension  fractale  est  nulle.  D’autre  part,  après  une
longue  transition,  on  obtient  une  dimension  fractale  constante  d’environ  1,512.  Il  est  évident  que  cette
analyse peut être complétée par une étude locale, à l’instar de celle réalisée pour les châteaux.
17.1.1.2. Analyse fractale locale de la répartition de l’établissement humain à l'échelle planétaire

La Figure  144  donne les  paramètres de  l’analyse  de  la  dimension  fractale  locale.  Contrairement  à
l’étude de la  répartition  des châteaux,  dans  ce chapitre,  il  sera systématiquement  étudié  la  huitième grille
afin  d’avoir  une  grille  suffisamment  proche  de  l’échelle  de  coupure  observée  dans  l’analyse  globale.  La
Figure 145 montre les variations locales de la dimension fractale dans chacune de 1 520 carrés composant
la grille d’analyse. Cette répartition ne montre qu’aucune structure particulière : aucun centre particulier ne
ressort.

Taille de carrés 311 km
Nombre de carrés 1 520

Dimension fractale moyenne 0,225

Écart-type 0,263

Figure 144. Paramètres de la dimension fractale locale

Figure 145. Dimension fractale locale contenue dans chaque carré
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17.1.1.3. Analyse locale du nombre d'habitants à l'échelle planétaire

À  l’instar  du  paragraphe  précédent,  on  peut  effectuer  une  analyse  locale  du  nombre  d’habitants
contenu dans chacune des cases (Figure 146) qui est une méthode de représentation connue sous le nom de
carte  par  prismes  et  reliefs  statistique  (Noin  et  Thumerelle,  1993,  p. 36-37).  Elle  permet  de  trouver  une
structure largement connue puisque les pics de population correspondent aux grands foyers de peuplement
à  l’échelle  du  monde.  Ainsi,  une  méthode  d’agrégation  relativement  simple  permet  de  construire  une
structure spatiale relativement complexe fait de « vides » et de « pleins ». Cela signifie que dans une anal-
yse fractale, à l’échelle du monde, le maillage permet d’estimer le nombre d’habitants d’une agglomération
carrée. Évidemment, pour éviter les biais, il faudrait connaître la répartition de la totalité de la population à
l’échelle du monde, ce qui est à l’heure actuelle impossible.

Figure 146. Structure locale de la répartition de la population à l’échelle du monde

Pour conclure, la Figure 147 montre que la dimension fractale locale et le nombre d’habitants local
sont liées une nouvelle fois par une relation linéaire hautement significative. En effet, la dimension fractale
travaille sur les lieux, et  non sur le nombre d’habitants en ces lieux. Toutefois, on peut s’interroger sur la
nature de la distribution du nombre d’habitants, n’est-elle pas fractale ?
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Figure 147. Projection du nuage de points de la population locale et de la dimension fractale locale

D = 4,766 ä 10-8 (± 0,207 ä 10-8) P 

avec N = 1 518 carrés et une probabilité supérieure à 10-3 (t = 23,050)

17.1.1.4. Loi rang - taille et distribution parétienne

Pour  répondre  à  cette  interrogation,  il  faudra  développer  d’autres  considérations.  Dans  le  cas  des
données brutes, l’étude de la distribution statistique du nombre d’habitants est impossible, car si les séries
rang - taille sont continues au niveau de chaque État, ce n’est plus le cas à l’échelle du monde. Ainsi, il ne
suffit pas d’ordonner la totalité des données de la base Tageo pour obtenir une loi rang - taille et une distri-
bution statistique parétienne à l’échelle du monde. Il faut nécessairement se munir d’un seuil de population
à partir duquel on peut réaliser une telle étude à l’échelle planétaire.

17.1.2. Données avec un filtre de population à 144 000 habitants

Il  est  difficile  de  fixer  un  seuil  entre  les  structures  urbaines  et  les  structures  rurales,  même  s’il
apparaît  clairement  dans  certaines  distributions  rang - taille  (Pumain,  1982 ;  Moriconi-Ébrard,  1994).  Il
n’est pas évident de les projeter à l’échelle du monde. Un exemple simple permet de le comprendre. Peut-
on prendre le seuil de population urbain-rural de la Chine pour étudier le territoire du Belize ? La réponse
est  sans  conteste  négative.  « Que  ce  soient  100 000,  500 000  ou  1 000 000  d’habitants,  les  seuils  retenus
sont de toute manière beaucoup plus élevés pour servir à une étude générale de l’urbanisation » (Moriconi-
Ébrard,  1994,  p. 9).  Toutefois,  la  base  Tageo  permet  d’obtenir  une  série  continue  sur  une gamme impor-
tante de population urbaine à l’échelle mondiale. Le seuil  de cette dernière correspond au nombre d’habi-
tants le plus élevé au niveau des 300e rangs. En effet, si l’on prend toutes les valeurs des rangs n°300 de la
base,  et  que  l’on  prend  la  valeur  maximale  de  cette  série,  on  obtient  le  seuil  à  partir  duquel  la  série  est
étudiable. Dans ce cas, ce seuil est fixé par le 300e  rang de la Chine, à savoir un nombre de 144 300 habi-
tants. On peut donc étudier une série continue allant du rang 1 au rang 2 668 (qui est celui du seuil fixé).
Cette série pourra bien évidemment être une nouvelle fois étudiée via une loi rang - taille et une distribution
parétienne,  mais  en  plus,  on  peut  projeter  la  répartition  des  lieux  correspondants  à  ces  relations  et  en
effectuer une analyse fractale.
17.1.2.1. Loi rang - taille et distribution parétienne

Le  classement  obtenu  avec  un  seuil  de  144 300  habitants  comporte  2 668  villes.  Ce  paragraphe
essayera d’en décrire les principales caractéristiques à travers une loi rang - taille d’une part, une distribu-
tion parétienne d’autre part.
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† Loi rang - taille à un seuil de 144 300 habitants

La Figure 148 représente le classement rang - taille obtenu. Elle ne correspond pas à un ajustement
linéaire,  ni  à  un  ajustement  à  un  polynôme  du  second  degré  qui  avait  été  observé  sur  les  435  premières
conurbations du monde d’après le classement de l’ONU (Forriez et Martin, 2007 ; Forriez et Martin, 2009),
mais à un polynôme du troisième degré de la forme y = d + bx2 + ax3. Bien que significatif, le terme en cx

ne semble pas utile, car sa suppression permet d’obtenir un ajustement de meilleur qualité. Autrement dit,
plus  l’échantillon  acquiert  une  certaine  taille,  plus  le  simple  modèle  linéaire  est  difficilement  acceptable
pour  définir  les  relations  rang - taille.  Qu’en  est-il  de  la  relation  entre  loi  rang - taille  et  distribution  de
Pareto dans ce cas ?

ln P = 16,417(± 0,004) - 0,101(± 0,001)ln2 r + 0, 004 H≤0, 001L ln3 r

Figure 148. Loi rang - taille à l’échelle du monde avec un seuil de 144 300 habitants

† Distribution parétienne à un seuil de 144 300 habitants

 Les données filtrées présentent un échantillon beaucoup plus important  par rapport à  ceux qui ont
été  étudiés  dans  le  chapitre  précédent.  En  effet,  si  la  relation  rang - taille  est  devenue  plus  complexe,  ce
n’est pas le cas de l’exposant a  de Pareto. La relation observée (Figure 149) montre une loi  de puissance
(figure de gauche), confirmée par un ajustement linéaire de très bonne qualité (figure de droite).
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Classe statistique : 150 000 habitants

Figure 149. Distribution parétienne observée

Dès lors, on pourrait penser que l’exposant a de Pareto devait, en principe, être un meilleur indica-
teur que l’ajustement d’une loi rang - taille, car la relation linéaire se maintient à la différente de celle de la
loi  rang - taille.  Malheureusement,  les  résultats  présentés  dans  la  Figure  150  montrent  le  contraire :  les
exposants a de Pareto varient en fonction du pas (ou de la classe statistique) choisi. Il faut remarquer que la
classe statistique correspond ici à une résolution ¶. Ce résultat est surprenant, car si les propriétés scalantes
de  la  loi  de  Pareto  sont  connus  depuis  longtemps  (Mandelbrot,  1963 ;  Zajdenweber,  1976),  le  fait  que
l’exposant a de Pareto varie lui-même en fonction de la classe statistique à laquelle il a été estimée n’a fait
l’objet d’aucun travail, du moins, si l’on prend pour référence la dernière publication de Daniel Zajdenwe-
ber (2009, p. 212-213). Les résultats ponctuels de la Figure 150 peuvent être améliorés en calculant toutes
les valeurs de l’exposant a de Pareto entre 150 000 et 5 000 000 d’habitants en prenant un pas de 100 000
habitants (Figure 151). Il est clair que l’exposant a de Pareto varie explicitement en fonction de la résolu-
tion  ¶.  Autrement  dit,  le  cas  observé  ici  n’est  ni  plus  ni  moins  que  celui  de  la  « dynamique  d’échelle »
longuement  détaillé  dans  l’étude  de  cas  d’Avignon  (cf.  chapitre  8).  Ainsi,  il  est  plus  pertinent  de  mettre
l’exposant  a  de  Pareto  en  fonction  du  logarithme de  la  résolution  ¶.  Cependant,  le  modèle  statistique  est
beaucoup plus difficile à établir, mais le choix peut se restreindre à quatre ajustements (Figure 151).

Classe statistique ¶ Exposant a de Pareto

150 000 habitants 1,877 ≤ 0,095

500 000 habitants 2,355 ≤ 0,162

1 000 000 d'habitants 2,725 ≤ 0,189

2 000 000 d'habitants 3,530 ≤ 0,213

Figure 150. Classe statistique et exposant de Pareto
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Modèle 1 : ln ¶ = b + aa Modèle 2 : ln ¶ = c + ba + aa2

ln ¶ = 10,596H≤ 0,201L + 1,124H≤ 0,057La ln ¶ = 5,960H≤ 0,404L + 4,008H≤ 0,245La
- 0,429H≤ 0,036La2

Modèle 3 : ln ¶ = d + ca + ba2 + aa3 Modèle 4 : ln ¶ = d + ba2 + aa3

ln ¶ = 5,900H≤ 1,710L + 4,067H≤ 1,633La
- 0,447H≤ 0,554La2 + 0,002H≤ 0,050La3

ln ¶ = 10,141H≤ 0,167L + 0,803H≤ 0,043La2

- 0,122H≤ 0,008La3

Figure 151. Estimations des lois possibles pour la « dynamique d’échelle » avec un exposant de Pareto

Le modèle n°4 de Figure 151 semble être le plus séduisant, car son équation est d’une forme iden-
tique à celle de la Figure 148. Il  paraît  très audacieux d’essayer de mettre en correspondance, dans ce cas
précis,  la  loi  rang - taille  et  cette  variation  de  l’exposant  a  de  Pareto.  Il  demeure  cependant  possible
d’affirmer que lorsque la loi rang - taille ne correspond plus à un modèle linéaire, cela signifie certainement
que  l’exposant  a  de  Pareto  suit  lui-même  un  processus  fractal  de  type  « dynamique  d’échelle ».  Ce  qui
permet  de  comprendre,  du  moins  en  partie,  pourquoi  la  répartition  spatiale  de  l’établissement  humain  est
elle-même fractale. Autrement dit, la correspondance entre la loi rang - taille et les distributions parétiennes
s’effectue, non pas par un exposant a de Pareto, mais par la variation de cet exposant a de Pareto en fonc-
tion de la classe du nombre d’habitants choisie.
17.1.2.2. Analyse fractale de la répartition de l’établissement humain à un seuil de 144 300 habitants

L’analyse fractale des données brutes était  un essai criticable.  Ainsi,  une nouvelle analyse fractale
avec  un  seuil  de  144 300 habitants  est  également  nécessaire  pour  homogénéiser  les  répartitions  (Figure
152).  Si  l’on  compare  cette  carte  avec  la  Figure  141,  on  constate  que  l’Afrique  subsaharienne  et  que
l’Amérique du Sud étaient surreprésentées dans le premier calcul. En toute logique, la structure fractale ne
change  pas  (Figure  153  et  Figure  154).  Les  deux  dimensions  fractales  observées  sont  du  même  ordre  de
grandeur.  Une  nouvelle  fois,  seule  l’échelle  de  coupure  est  différente,  car  la  qualité  des  données  a  été
dégradée. Ainsi, on passe d’une échelle de coupure valant 245 km (Figure 143) à une autre valant 403 km
(Figure 154).
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Figure 152. Répartition de l’établissement humain avec un seuil de 144 300 habitants

Figure 153. Analyse fractale globale de la répartition de l’établissement humain avec un seuil de 144 300 habitants

Nombre de localisation 2 668

Échantillon 11 % de la base de données
Nombre d'habitants 1 492 590 000

Échelle de coupure 403 km

Échelle maximale 16 318 km

Dimension fractale 1,447 ≤ 0,005

Figure 154. Paramètres de la structure fractale globale de la répartition de l’établissement humain avec un seuil de 144 300 habitants

L’analyse  fractale  locale  avec  un  seuil  de  144 300 habitants  (Figure  155  et  Figure  156)  est  beau-
coup plus lisible que celle réalisée avec les données brutes. Les principaux centres du monde apparaissent à
l’instar  de  l’analyse  effectuée  sur  les  châteaux.  Les  pics  de  dimensions  fractales  observés  correspondent
aux  foyers  de  peuplement  évoqués  dans  le  chapitre  15  (Figure  155  et  Figure  157).  La  Figure  158  établit
qu’il existe une relation linéaire entre la dimension fractale locale et le nombre d’habitants local. Ainsi, les
résultats obtenus sur les données brutes sont confirmés dans le cas d’une répartition filtrée.
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Figure 155. Dimension fractale locale contenue dans chaque carré avec un seuil de 144 300 habitants

Taille de carrés 291,578 km

Nombre de carrés 878
Dimension fractale moyenne 0,052

Écart-type 0,106

Figure 156. Paramètres de la dimension fractale locale avec un seuil de 144 300 habitants
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Figure 157. Structure locale de la répartition de la population à l'échelle du monde avec un seuil de 144 300 habitants

Figure 158. Projection du nuage de points de la population locale et de la dimension fractale locale avec un seuil de 144 300 habitants

D = 2,887 ä 10-8 (± 0,089 ä 10-8) P 

avec N = 877 carrés et une probabilité supérieure à 10-3 (t = 32,391)
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17.1.3. Données avec un filtre de population à 1 million d'habitants

Avant  de passer  à la  conclusion de  cette partie  et  d’analyser  la  structure  fractale de  chaque conti-
nent,  il  semble très intéressant  de montrer  les  résultats  de l’analyse avec un seuil  fixé à 1  million d’habi-
tants  (Figure  159).  En  effet,  cette  répartition  correspond  aux  grands  foyers  de  population  antiques :  le
bassin méditerranéen, la Perse, les vallées de l’Indus et du Gange, les vallées des fleuves Jaune et Bleu, la
vallée du Nil,  le Nigeria,  les Grands lacs africains, les Andes et  le Mexique. À ceux-ci,  il  faut  ajouter les
foyers médiévaux et modernes : les grands lacs nord-américains, la Russie européenne et le Rio de la Plata.
Autrement  dit,  la  position  des  grandes  agglomérations  actuelles  correspond  à  une inertie  historique pluri-
millénaire masquée par  la  mobilité  apparente  du  monde contemporain  et  par  la  croissance  importante des
villes dites moyennes (Pumain, 1982 ; Baudelle, 2003).

Figure 159. Répartition de l’établissement humain avec un seuil de 1 000 000 habitants

17.1.3.1. Loi rang - taille et distribution parétienne à un seuil de 1 000 000 habitants

Avec ce seuil, la nouvelle loi rang - taille contient les 303 premiers rangs. On aurait pu espérer une
linéarisation de la loi comme le laisser suggérer la Figure 148, ou au moins un polynôme du second degré
(Forriez et Martin, 2007 ; Forriez et Martin, 2009). Il n’en est rien (Figure 160). Le meilleur ajustement est
obtenu avec un polynôme du troisième degré de la forme y = d + bx2 + ax3. Cela entraîne un exposant a de
Pareto  variable  dont  les  paramètres  d’étude  sont  précisés  dans  la  Figure  161.  La  Figure  162  donne  les
modèles possibles.  Comme dans le  cas précédent,  le  choix va  se  porter  sur  le  modèle  n°4  pour conserver
une unité de forme dans les équations.
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ln P = 16,597(± 0,016) - 0,013(± 0,003)ln2 r + 0, 008 H≤0, 001L ln3 r

Figure 160. Loi rang - taille à l’échelle du monde avec un seuil de 1 000 000 habitants

Classe minimale 150 000 habitants
Classe maximale 2 000 000 habitants

Intervalle 100 000 habitants

Figure 161. Paramètres de l’exposant de Pareto

Modèle 1 ln ¶ = 10,190H≤ 0,301L + 1,405H≤ 0,119La
Modèle 2 ln ¶ = 5,959H≤ 0,716L + 4,980H≤ 0,592La - 0,727H≤ 0,120La2

Modèle 3 ln ¶ = 7,470H≤ 3,181L + 3,020H≤ 4,060La + 0,092H≤ 1,683La2 - 0,111H≤ 0,227La3

Modèle 4 ln ¶ = 9,827H≤ 0,271L + 1,340H≤ 0,129La2 - 0,278H≤ 0,033La3

Figure 162. Estimations des lois possibles pour la « dynamique d’échelle » avec un exposant de Pareto

17.1.3.2. Analyse fractale de la répartition de l'établissement humain à un seuil de 1 000 000 habitants

On  retrouve  une  nouvelle  fois  une  dimension  fractale  du  même  de  grandeur  que  les  deux  précé-
dentes avec une nouvelle dégradation de l’échelle de coupure (Figure 163). En effet, on est successivement
passé de 245 à 403 km, puis de 403 à 1 097 km. Dans ce cas, l’estimation de dimensions fractales locales
permet de retrouver les grands bassins de peuplement : Nigeria, Mexique, Andes, Inde, Chine, etc. (Figure
164).
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Nombre de localisation 303

Échantillon 1 % de la base de données

Nombre d'habitants 739 600 000

Échelle de coupure 1 097 km

Échelle maximale 16 318 km

Dimension fractale 1,456 ≤ 0,009

Figure 163. Dimension fractale globale de la répartition de l’établissement humain avec un seuil de 1 000 000 habitants

Taille de carrés 957,906 km

Nombre de carrés 119

Dimension fractale moyenne 0,028

Écart-type 0,059

Figure 164. Dimension fractale locale de la répartition de l’établissement humain avec un seuil de 1 000 000 habitants

De  plus,  une  nouvelle  fois,  il  existe  une  relation  linéaire  entre  la  dimension  fractale  locale  et  le
nombre d’habitants du carré telle que D = 0,751 ä  10-8  (± 0,051 ä  10-8) P  avec un effectif de 118 cases et
une variable t de Student valant 14,754 (soit une probabilité associée supérieure à 10-3). Si on compare ce
résultat avec ceux présentés dans les Figures 147 et 158, on remarque qu’en fonction du filtre, la valeur de
la pente est plus forte avec les données brutes qu’avec les données filtrées. Analogiquement, cette relation
ressemble  à  la  loi  d’Ohm  qui  associe  la  tension  et  l’intensité  d’un  courant  électrique  avec  une  constante
appelée résistance. Malheureusement, ici, on ne peut pas établir qui joue le rôle de la tension et qui joue le
rôle de l’intensité. Toutefois, les pentes obtenues pourraient s’appeler « résistance en échelle » ou « inverse
de la résistance en échelle ».
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La  structure  multi-échelle  du  monde  est  donc  doublement  scalaire.  Elle  concerne  à  la  fois  l’ex-
posant  de  Pareto  caractérisant  les  distributions  de  probabilité  d’avoir  des  lieux  avec  un  certain  nombre
d’habitants,  ainsi  que la répartition  spatiale de ces lieux.  La robustesse de  la forme des équations concer-
nant  les  lois  rang -  taille  et  les  variations  de  l’exposant  de  Pareto  est  tout  à  fait  remarquable  à  plus  d’un
titre.  Tout d’abord,  elle  prouve la fractalité intrinsèque des données concernant  la population agglomérée.
Ensuite, cela peut être un indice expliquant la fractalité de la répartition des lieux que l’organisation de ces
populations induit. Afin de compléter l’étude, une approche par continent semble être intéressante.

17.2. À l'échelle continentale

On  peut  aisément  appliquer  les  méthodes  précédentes  à  l’échelle  continentale  qui  présente  un
double  intérêt.  Il  s’agit  d’abord  de  diviser  les  lois  rang - taille  avec  des  seuils  de  continuité  plus  petit,
chaque continent possédant son propre seuil. Ainsi, le seuil de continuité identifié précédemment va varier
en  fonction  de  l’ensemble  continental  considéré,  donc  de  ses  spécificités  de  peuplement.  Enfin,  cette
échelle permet d’estimer des dimensions fractales sans le biais introduit par l’océan. Quatre grands ensem-
bles ont été choisi : l’Eurasie, l’Amérique, l’Afrique et l’Océanie.

17.2.1. L'Eurasie

Le découpage continental permet d’atteindre des seuils de population beaucoup plus bas par rapport
à  l’échelle  mondiale,  en  suivant  le  même  raisonnement  que  celui  qui  a  permis  la  construction  du  seuil  à
144 300 habitants à l’échelle du monde. Ce n’est pas le cas ici,  car le seuil  mondial est  fixé par la Chine.
Par  conséquent,  le  seuil  du  continent  eurasiatique  est  le  même  que  celui  du  monde.  Il  est  étonnant  de
constater que la dimension fractale globale de ce continent soit  celle estimée pour le monde (Figure 165).
Les dimensions fractales locales permettent une nouvelle fois de retrouver les grands foyers historiques de
population sur ce continent (Figure 166).

Par contre, la structure fractale de la population est légèrement différente. En effet, dans ce cas, un
polynôme  du  second  degré  est  le  meilleur  ajustement  estimé  pour  la  loi  rang - taille  (Figure  167).
Autrement  dit,  le  meilleur  ajustement  pour  la  variation  de  l’exposant  de  Pareto  (dont  les  paramètres  sont
résumés au sein de la Figure 168) semble être le modèle n°2 de la Figure 169. Pour finir,  on peut ajouter
que  la  relation  entre  la  dimension  fractale  locale  et  le  nombre  d’habitants  local  est  toujours  de  la  même
nature que pour l’analyse à l’échelle mondiale. Dans ce cas, on observe D = 2,978 ä 10-8  (± 0,104 ä 10-8) P
avec  un  effectif  de  905  cases  et  une  variable  t  de  Student  valant  28,655  (soit  une  probabilité  associée
supérieure à 10-3).
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Seuil 144 300 habitants

Ville la plus

importante
13 278 500 habitants

Nombre de

localisations
1 753 sur 1 754

Nombre

d'habitants

968 971 000 soit

14% de la

population mondiale

Échelle

de coupure
245 km

Échelle maximale 16 318 km

Dimension

fractale
1,466 ≤ 0,004

Figure 165. Dimension fractale globale du continent eurasiatique

Taille de carrés 151,672 km

Nombre de carrés 906

Dimension fractale moyenne 0,025

Écart-type 0,087

Figure 166. Dimensions fractales locales du continent eurasiatique
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ln P = 16,766(± 0,010) - 0,353(± 0,004)ln r - 0, 041 H≤0, 001L ln2 r

Figure 167. Loi rang - taille sur la répartition des établissements humains à l’échelle du continent eurasiatique

Classe minimale 150 000 habitants
Classe maximale 4 000 000 habitants

Intervalle 100 000 habitants

Figure 168. Paramètres de l’exposant de Pareto

Modèle 1 ln ¶ = 10,845H≤ 0,195L + 1,093H≤ 0,054La
Modèle 2 ln ¶ = 6,810H≤ 0,377L + 3,626H≤ 0,229La - 0,378H≤ 0,034La2

Modèle 3 ln ¶ = 8,998H≤ 1,326L + 1,487H≤ 1,265La + 0,285H≤ 0,388La2 - 0,066H≤ 0,038La3

Modèle 4 ln ¶ = 10,546H≤ 0,738L + 0,738H≤ 0,037La2 - 0,110H≤ 0,007La3

Figure 169. Estimations des lois possibles pour la « dynamique d’échelle » avec un exposant de Pareto

La  suite  de  cette  partie  propose  de  poser  les  résultats  obtenus  sur  les  trois  autres  ensembles
continentaux.

17.2.2. L'Amérique

L’Amérique est le seul continent qui possède la totalité des sites anthropiques géolocalisés au seuil
fixé.  Toutefois,  il  faut  remarquer  que  la  Guyane  française,  ainsi  que  les  différentes  îles  européennes  des
Antilles ne font pas parties du classement. Par exemple, la population de la Guyane a été « noyée » dans les
statistiques françaises. Ce complément à apporter à la base de données est minime. Aussi, on suppose qu’il
n’intervient pas dans les résultats présentés.

La  Figure  170  montre  que  la  dimension  fractale  globale  du  continent  américain  est  nettement
inférieure  à  celle  du  monde.  Cela  est  sans  nul  doute  dû  à  son  peuplement  tardif  par  rapport  au  reste  du
monde. Malgré tout, la Figure 171 établit bien les foyers de populations primitifs (Amérique centrale et Rio
de la Plata).
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L’ajustement  de la  loi rang - taille  est  un polynôme du second degré (Figure 172) comme dans le
cas  de  l’Eurasie.  On  peut  donc  considérer  que  le  meilleur  ajustement  pour  la  variation  de  l’exposant  de
Pareto (dont les paramètres sont résumés dans la Figure 173) est le modèle n°2 de la Figure 174.

De plus,  pour ce cas la relation entre la dimension fractale locale et le nombre d’habitants local, on
observe D = 4,206 ä 10-8 (± 0,222 ä 10-8) P avec un effectif de 548 cases et une variable t de Student valant
18,962 (soit une probabilité associée supérieure à 10-3).

Seuil 90 100 habitants

Ville la plus

importante
11 928 200 habitants

Nombre de

localisations
959 sur 959

Nombre

d'habitants

366 007 000 soit 5%

de la population

mondiale

Échelle

de coupure
403 km

Échelle maximale 16 318 km

Dimension

fractale
1,388 ≤ 0,007

Figure 170. Dimension fractale globale du continent américain

Taille de carrés 106,641 km

Nombre de carrés 549

Dimension fractale moyenne 0,029

Écart-type 0,099

Figure 171. Dimensions fractales locales du continent américain
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ln P = 16,403(± 0,017) - 0,487(± 0,007)ln r - 0, 034 H≤0, 001L ln2 r

Figure 172. Loi rang - taille sur la répartition des établissements humains à l’échelle du continent américain

Classe minimale 150 000 habitants
Classe maximale 5 000 000 habitants

Intervalle 100 000 habitants

Figure 173. Paramètres de l’exposant de Pareto

Modèle 1 ln ¶ = 10,811H≤ 0,139L + 1,112H≤ 0,041La
Modèle 2 ln ¶ = 8,397H≤ 0,248L + 2,840H≤ 0,170La - 0,286H≤ 0,028La2

Modèle 3 ln ¶ = 7,364H≤ 0,754L + 4,035H≤ 0,836La - 0,709H≤ 0,293La2 + 0,048H≤ 0,033La3

Modèle 4 ln ¶ = 10,963H≤ 0,125L + 0,695H≤ 0,039La2 - 0,108H≤ 0,008La3

Figure 174. Estimations des lois possibles pour la « dynamique d’échelle » avec un exposant de Pareto

17.2.3. L'Afrique

Berceau  de  l’humanité,  le  réseau  africain  a  une  dimension  fractale  globale  très  proche  de  celle  à
l’échelle du monde, malgré sa faible population totale (Figure 175). La Figure 176 établit une nouvelle fois
les grands foyers de population : Afrique du Nord, le bassin du Nil, les Grands Lacs africain et le Nigeria.

L’ajustement de la loi rang - taille (Figure 177) est encore un polynôme du second degré. On peut
donc considérer que le meilleur ajustement  pour la variation de l’exposant de Pareto (dont les  paramètres
sont résumés dans la Figure 178) est encore le modèle n°2 de la Figure 179.

Une  nouvelle  fois,  il  existe  une  relation  linéaire  entre  la  dimension  fractale  locale  et  le  nombre
d’habitants  local.   Dans  ce  cas,  on  observe  D = 5,086 ä  10-8  (±  0,381  ä 10-8) P  avec  un  effectif  de 1  116
cases et une variable t de Student valant 13,362 (soit une probabilité associée supérieure à 10-3).
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Seuil 21 300 habitants

Ville la plus

importante
8 682 000 habitants

Nombre de

localisations
1 934 sur 1 967

Nombre

d'habitants

267 115 000 soit 4%

de la population

mondiale

Échelle

de coupure
245 km

Échelle maximale 8 103 km

Dimension

fractale
1,472 ≤ 0,004

Figure 175. Dimension fractale globale du continent africain

Taille de carrés 71,5625 km

Nombre de carrés 1 117

Dimension fractale moyenne 0,027

Écart-type 0,092

Figure 176. Dimensions fractales locales du continent africain
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ln P = 16,362(± 0,015) - 0,580(± 0,005)ln r - 0, 034 H≤0, 001L ln2 r

Figure 177. Loi rang - taille sur la répartition des établissements humains à l’échelle du continent africain

Classe minimale 25 000 habitants
Classe maximale 4 000 000 habitants

Intervalle 100 000 habitants

Figure 178. Paramètres de l’exposant de Pareto

Modèle 1 ln ¶ = 10,552H≤ 0,211L + 0,967H≤ 0,054La
Modèle 2 ln ¶ = 7,605H≤ 0,302L + 2,887H≤ 0,186La - 0,282H≤ 0,027La2

Modèle 3 ln ¶ = 3,759H≤ 0,446L + 7,039H≤ 0,459La - 1,638H≤ 0,147La2 + 0,137H≤ 0,015La3

Modèle 4 ln ¶ = 10,510H≤ 0,204L + 0,597H≤ 0,050La2 - 0,084H≤ 0,009La3

Figure 179. Estimations des lois possibles pour la « dynamique d’échelle » avec un exposant de Pareto

17.2.4. L'Océanie

La  structure  de  l’Océanie  qui  compte  environ  1 700  îles  dont  500  habitées  (Dumont,  2004),  est
incomplète,  car  elle  comporte  des  milliers  d’îles  dépendant  de  la  France,  du  Royaume-Uni  et  des  États-
Unis, pour ne citer que les principaux, que la base Tageo ne prend pas en compte puisqu’elles ne sont pas
souveraines, ce qui fait que le nombre de leurs habitants est rattaché à la métropole dont elles dépendent. Le
problème  apparaît  clairement  :  que  pèse  le  nombre  d’habitants  à  Papeete  par  rapport  à  celui  d’une  ville
moyenne  de  la  métropole  française  ?  Ainsi,  toutes  ces  données  sont  absentes  de  la  base.  En  ayant  con-
science de ce problème, une analyse continentale de l’Océanie peut être menée.

Malgré tout, la  dimension fractale globale du réseau océanien est beaucoup plus proche de celle à
l’échelle  du  monde  que ne  l’est  celle  à  l’échelle  de  l’Amérique (Figure  180).  On  aurait  pu  penser  que la
structure insulaire spécifique à ce continent allait perturber les résultats que l’on a obtenus jusqu’à présent
sur les autres continents. La Figure 181 montre le contraire : on établit les différents foyers de populations :
la côte est de l’Australie, la Nouvelle-Zélande, les Fiji et la Polynésie.
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L’ajustement  obtenu pour  la  loi  rang - taille  est  très  particulier.  En  effet,  contrairement  aux autres
continents, l’Océanie possède un seuil très bas de 227 habitants, ce qui permet d’observer vraisemblement
la rupture entre l’urbain et le rural. La Figure 182 illustre à ce propos que deux ajustements linéaires peu-
vent  être  établis,  marquant  bien  deux  régimes,  à  l’instar  des  transitions  observées  sur  différentes  lois
d’échelle.  Le « rang de coupure » est  le  numéro 244 ;  il  correspond à une population de 7  300 habitants.
Cette information permet de mieux paramétrer la courbe de la variation de l’exposant de Pareto en choisis-
sant  une classe minimale  proche de la valeur  de  la  population au rang critique (Figure  183).  Le choix du
modèle  dans  la  Figure  184  est  donc  beaucoup  évident  que  dans  les  autres  continents.  Cependant,  il  ne
semble pas déraisonnable de penser qu’il  s’agit  encore une fois du modèle n°2 (Figure 184),  car l’aligne-
ment des points ne forme pas une droite (Figure 184). De plus, il s’agit du modèle que l’on a systématique-
ment rencontré dans les trois autres continents. Tous ces résultats sont bien sûr à confirmer en ajoutant les
données manquantes.

L’Océanie  est  le  seul  cas  où  la  relation  linéaire  entre  la  dimension  fractale  locale  et  le  nombre
d’habitants  local  n’est  pas  significatif  puisque   l’on  observe  D = 2,092 ä  10-8  (±  0,213  ä 10-8) P  avec  un

effectif  de  341  cases  et  une  variable  t  de  Student  valant  0,981  (soit  une  probabilité  associée  inférieure  à

10-1).

Seuil 227 habitants

Ville la plus

importante
4 277 200 habitants

Nombre de

localisations
823 sur 836

Nombre

d'habitants

23 180 200 soit 0,4%

de la population

mondiale

Échelle

de coupure
665 km

Échelle maximale 8 103 km

Dimension

fractale
1,400 ≤ 0,008

Figure 180. Dimension fractale globale du continent océanien
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Taille de carrés 74,2344 km

Nombre de carrés 342

Dimension fractale moyenne 0,046

Écart-type 0,134

Figure 181. Dimensions fractales locales du continent océanien

Domaine n°1 : ln P = 15,536(± 0,017) - 1,201(± 0,004)ln r (taille de l'échantillon : 244)

Domaine n°2 : ln P = 24,721 (± 0, 063) - 2,857 (± 0,010) (taille de l'échantillon : 592)

Transition observée : r = 244 et P = 7 300 habitants

Figure 182. Loi rang - taille sur la répartition de l'établissement humain à l’échelle du continent océanien

Classe minimale 100 000 habitants
Classe maximale 2 000 000 habitants

Intervalle 10 000 habitants

Figure 183. Paramètres de l’exposant de Pareto

  351



Modèle 1 ln ¶ = 10,725H≤ 0,081L + 0,899H≤ 0,025La
Modèle 2 ln ¶ = 8,344H≤ 0,090L + 2,724H≤ 0,065La - 0,309H≤ 0,011La2

Modèle 3 ln ¶ = 6,368H≤ 0,153L + 5,288H≤ 0,186La - 1,294H≤ 0,070La2 + 0,115H≤ 0,008La3

Modèle 4 ln ¶ = 10,626H≤ 0,068L + 0,667H≤ 0,022La2 - 0,108H≤ 0,004La3

Figure 184. Représentation graphique de la variation de l’exposant de Pareto en fonction de la classe statistique et estimations des lois possibles pour 
la « dynamique d’échelle » de cet exposant dans le cas océanien

17.2.5. Conclusion

Ni le seuil de population, ni le seuil spatial imposé par le découpage en continent ne modifient les
structures multi-échelles observées à l’échelle du monde. Certes, il existe des écarts au niveau des dimen-
sions  fractales  globales,  mais  ils  ne  sont  pas  suffisamment  significatifs.  De  plus,  la  structure  rang - taille
observée à l’échelle des continents montre une robustesse du point de vue de la forme des équations absolu-
ment  remarquable,  même s’il  ne s’agit  pas de la même forme des équations à l’échelle du monde dont  la
complexité est peut être due à l’espacement introduit par les océans. Que deviendrait cette structure si l’on
recréait artificiellement la Pangée ?

L’analyse  par  continents  a permis  de  préciser  la  localisation des  foyers  de  peuplement  historiques
que  l’on  n’avait  entre  aperçus  à  l’échelle  du  monde.  En  effet,  l’ajustement  des  seuils  de  continuité  de
population a  permis un meilleur  positionnement  des lieux,  avec pour conséquence d’améliorer  l’approche
des dimensions fractales locales. De plus, cette analyse a permis de confirmer à des échelles plus fines la
fractalité  des  données  concernant  la  population  des  lieux  considérés.  Ainsi,  que  l’on  utilise  le  nombre
d’habitants  contenu  dans  une  agglomération  administrative,  ou  que  l’on  utilise  le  nombre  d’habitants
contenu  dans  une  agglomération  morphologique,  au  sens  de  François  Moriconi-Ébrard  (1994),  la  nature
fractale des données a pour conséquence que le choix de la limite n’influe pas sur la localisation ponctuelle
des lieux, puisque, ensuite, une analyse par comptage de boîtes carrés peut permettre une agglomération de
population aussi efficace que l’agglomération morphologique. En effet, on étudie la dégradation du nombre
d’habitants en fonction d’un maillage prédéterminé. Dans ce cas, la position des lieux détermine la limite
de  cette  information.  On  peut  donc  mener  une  étude  assez  détaillée  sur  la  structure  de  la  répartition  du
nombre d’habitants en des lieux donnés à un autre niveau que l’agglomération morphologique. Ce niveau
avait été appelé « niveau 5 » dans le chapitre 9. Ce niveau est donc fondamental pour l’étude de l’organisa-
tion scalo-spatiale de l’établissement humain.

Avant  de  conclure  ce  chapitre,  il  faut  effectuer  quelques  calculs  de  dimensions  fractales  de  la
répartition de l’établissement humain à l’échelle étatique afin de vérifier la portée de ce « niveau 5 ».

352   



17.3. À l'échelle étatique

À  l’instar  de  l’étude  sur  les  châteaux,  on  peut  estimer  des  dimensions  fractales  territoriales  à
l’échelle  étatique,  soit  193  territoires.  La  Figure  185  donne les  caractéristiques  des  mesures  effectuées.  Il
faut noter que quatre Etats n’ont pas de dimensions fractales calculables. Il s’agit du Vatican, de Monaco,
de Nauru et  de Singapour, où la dimension fractale est  nulle soit  parce qu’il  n’y a qu’un point,  soit  parce
que  les  points  sont  si  proches  qu’il  est  impossible  d’estimer  une  autre  dimension  que  la  dimension
topologique. Tout comme avec les châteaux, on constate qu’il n’y a aucun lien entre le nombre de lieux et
la  dimension  fractale  territoriale,  entre  l’échelle  de  coupure  et  la  dimension  fractale  territoriale  et  entre
l’étendue et la dimension fractale territoriale.

La Figure 186 dresse la statistique de cette valeur. Une nouvelle dimension fractale caractéristique
apparaît  autour  de  1,2.  Cela  montre  une nouvelle  fois  que  la  dimension  fractale  a  varié  en  fonction  de  la
résolution,  puisqu’à  l’échelle  du  monde  et  à  l’échelle  continentale,  elle  valait  environ  1,5.  Néanmoins,  à
l’échelle continentale,  il  existait  des  écarts  par  rapport  à  l’échelle du  monde.  La Figure  187  confirme ces
écarts :  chaque  continent  possède  une  dimension  fractale  territoriale  propre.  Sur  un  pied  d’égalité,  on
trouve l’Afrique et l’Amérique avec une dimension fractale d’environ 1,1 ; l’Eurasie possède la dimension
fractale la plus élevée et l’Océanie la plus faible. Le cinquième niveau est donc loin d’être homogène. Si on
prend le cas de l’Afrique, à l’échelle du monde, elle est incluse dans la dimension fractale globale d’envi-
ron  1,5 ;  à  l’échelle  continentale,  elle  possède  une  dimension  fractale  globale  d’environ  1,5 ;  à  l’échelle
étatique, une dimension fractale moyenne d’environ 1,1. Le cas de l’Océanie est plus spectaculaire :  1,5 à
l’échelle  du  monde ;  1,4  à  l’échelle  continentale  et  0,7  à  l’échelle  étatique.  Dans  ce  cadre,  la  dimension
fractale  permet  la  quantification  de  différents  niveaux  de  l’espace  géographique,  mais  il  faut  toujours
garder à l’esprit que ces valeurs sont relatives à l’état d’échelle du système, dans ce cas, la résolution valant
1 km.  Autrement  dit,  si  on  passait  à  une  résolution  valant  1 m,  les  dimensions  fractales  calculées
changeraient.

Quoi  qu’il  en  soit,  l’articulation  multi-échelle  de  l’espace  mondial  ne  peut  se  comprendre  sans  la
notion  de  « foyers  historiques  de  population »,  puisque  ces  derniers  déterminent  la  position  des  grandes
agglomérations à  l’échelle  planétaire.  Plus  il  y a  de  foyers,  plus  la  dimension fractale  semble  être élevée,
comme le confirme le lien formel entre la dimension fractale et le nombre d’habitants en un lieu donné. Si
l’on parcours le globe, on constate, qu’en Eurasie, il y en a au moins quatre (Balkans, Mésopotamie, Inde et
Chine) ;  en  Amérique,  au  moins  trois  (Grands  Lacs,  Amérique  centrale,  Rio  de  la  Plata) ;  en  Afrique,  au
moins  trois  (Nil,  Nigeria,  Grands  lacs) ;  en  Océanie,  au  moins  deux  (Australie  de  l’est ;  Polynésie).  Les
pistes de recherche sont donc nombreuses et prometteuses.
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État
Nombre
de lieux

Échelle de

coupure HkmL
Étendue HkmL

Dimension
fractale

territoriale

Erreur
Variable t

de

Student
Afghanistan 117. 90. 812.4 1.445 0.008 172.031

Afrique du Sud 293. 90. 1352.9 1.448 0.009 163.737
Albanie 67. 33.1 170.7 1.385 0.014 99.194
Algérie 285. 54.6 1176.1 1.155 0.005 210.696

Allemagne 300. 90. 788.4 1.509 0.013 117.556

Andorre 7. 4.5 11. 0.874 0.052 16.805
Angola 36. 148.4 1107.7 1.086 0.013 83.587

Antigua-et-Barbuda 15. 2.7 19.3 0.727 0.015 50.074
Arabie Saoudite 51. 148.4 1510.2 1.179 0.013 93.248

Argentine 86. 148.4 1844.6 1.137 0.009 121.3

Arménie 300. 20.1 259.8 1.352 0.007 188.183
Australie 212. 148.4 3463.4 1.147 0.008 148.713
Autriche 287. 33.1 257.2 1.437 0.011 130.695

Azerbaïdjan 192. 33.1 365. 1.4 0.009 163.951
Bahamas 24. 90. 652. 1.075 0.018 60.508
Bahrain 11. 2.7 16.6 0.691 0.016 42.433

Bangladesh 155. 33.1 454.9 1.448 0.007 216.051
Barbade 11. 4.5 19.9 0.939 0.021 44.095
Belgique 300. 20.1 210.6 1.54 0.006 237.079

Belize 9. 33.1 127.7 0.659 0.026 25.269
Bénin 33. 33.1 252.1 0.969 0.017 56.949

Bhoutan 20. 33.1 119.1 1.017 0.028 36.264
Biélorussie 102. 90. 441.4 1.4 0.017 82.075
Birmanie 67. 90. 742.5 1.19 0.009 136.347
Bolivie 125. 148.4 1248.9 1.287 0.013 101.228

Bosnie-Herzegovine 231. 33.1 275.9 1.538 0.01 156.368
Botswana 234. 54.6 906.9 1.327 0.007 179.307

Brésil 300. 148.4 3641. 1.257 0.007 169.652
Bruneï 5. 12.2 37.7 0.384 0.042 9.179

Bulgarie 240. 33.1 304.9 1.59 0.009 176.665
Burkina Faso 52. 90. 502.7 1.391 0.013 111.216

Burundi 15. 33.1 157.6 1.182 0.021 56.941
Cambodge 24. 90. 387.6 1.267 0.018 69.603

Cameroun 88. 90. 692.3 1.41 0.01 135.689
Canada 300. 148.4 2392.3 1.11 0.006 180.52

Cap Vert 17. 12.2 239.8 0.565 0.009 64.707
Chili 297. 54.6 854.1 1.11 0.005 224.214
Chine 299. 244.7 3229.2 1.309 0.007 187.426

Chypre 265. 4.5 109.9 1.243 0.004 291.588

Figure 185-1. Estimation des dimensions fractales territoriales à l’échelle étatique

354   



État
Nombre
de lieux

Échelle de

coupure HkmL
Étendue HkmL

Dimension
fractale

territoriale

Erreur
Variable t

de

Student
Vatican 1. 22 026.5 109.9 0. 0. 0.

Colombie 300. 54.6 1525.4 1.182 0.004 306.868
Comores 5. 12.2 97.5 0.264 0.015 17.995
Congo 31. 90. 685.4 1.073 0.014 76.319

Congo Zaïre 124. 244.7 1998.2 1.405 0.01 135.347
Corée du Nord 15. 148.4 473.4 1.044 0.04 26.32
Corée du Sud 135. 33.1 343.8 1.414 0.01 139.858

Costa Rica 199. 33.1 287.1 1.427 0.013 112.567
Côte d'Ivoire 78. 90. 620.2 1.434 0.014 100.959

Croatie 296. 33.1 645.5 1.187 0.006 210.514
Cuba 142. 33.1 357.8 1.258 0.009 147.039

Danemark 300. 33.1 340.4 1.353 0.009 157.116
Djibouti 5. 44.7 94.6 0.028 0.11 0.252

Dominique 22. 7.4 22.2 1.349 0.032 41.843

Égypte 195. 33.1 828.8 1.141 0.009 133.747

Émirats Arabes Unis 9. 20.1 172.4 0.546 0.011 50.169

Équateur 116. 90. 626.4 1.225 0.012 103.667

Érythrée 18. 33.1 295.9 0.745 0.012 62.573

Espagne 300. 90. 1719.9 1.259 0.008 152.01
Estonie 300. 33.1 214.9 1.5 0.007 204.653

États-Unis 300. 244.7 4402.8 1.132 0.006 182.133

Éthiopie 141. 90. 1188. 1.32 0.01 135.487

Fiji 22. 33.1 632.7 0.674 0.008 81.841

Finlande 103. 90. 765.1 1.339 0.01 128.488
France 300. 90. 1002.2 1.457 0.007 222.813
Gabon 35. 90. 601.8 1.193 0.014 82.425

Gambie 20. 12.2 49.9 0.593 0.021 28.18
Georgie 114. 33.1 228.1 1.295 0.011 114.968
Ghana 76. 54.6 411.6 1.191 0.012 98.273
Grèce 300. 54.6 713.4 1.374 0.008 182.501

Grenade 7. 7.4 30.9 0.605 0.024 25.644
Guatemala 300. 20.1 347.2 1.378 0.006 243.406

Guinée 38. 90. 550. 1.316 0.016 83.003
Guinée équatoriale 16. 33.1 566.8 0.785 0.01 76.911

Guinée-Bissau 14. 33.1 134.3 0.959 0.02 47.333
Guyana 42. 54.6 383.8 1.02 0.013 77.179

Haïti 38. 33.1 192.5 1.145 0.016 72.586
Honduras 281. 20.1 365. 1.4 0.006 235.329
Hongrie 300. 33.1 281.5 1.549 0.007 213.067

Figure 185-2. Estimation des dimensions fractales territoriales à l’échelle étatique

  355



État
Nombre
de lieux

Échelle de

coupure HkmL
Étendue HkmL

Dimension
fractale

territoriale

Erreur
Variable t

de

Student

Îles Marshall 90. 148.4 765.1 1.306 0.014 92.809

Îles Solomon 9. 54.6 533.8 0.404 0.012 34.099
Inde 300. 148.4 2643.9 1.37 0.007 192.107

Indonésie 299. 244.7 1737.1 1.222 0.011 110.395
Iraq 81. 90. 788.4 1.262 0.011 110.669
Iran 267. 90. 1587.6 1.461 0.006 234.436

Irlande 156. 33.1 411.6 1.437 0.009 153.719
Islande 103. 90. 343.8 1.305 0.015 87.649
Israël 227. 12.2 167.3 1.216 0.007 184.444
Italie 300. 90. 1085.7 1.363 0.009 152.379

Jamaïque 26. 33.1 68.7 1.204 0.045 26.599

Japon 300. 90. 1844.6 1.126 0.007 155.699
Jordanie 90. 12.2 350.7 0.932 0.005 193.819

Kazakhstan 161. 244.7 1556.2 1.445 0.012 118.005
Kenya 149. 90. 871.3 1.326 0.01 128.113

Kirgyzstan 91. 90. 395.4 1.475 0.011 130.137

Kiribati 24. 54.6 837.1 0.534 0.007 75.1
Koweit 72. 4.5 67.4 0.994 0.008 122.143

Laos 23. 90. 626.4 1.054 0.015 71.672
Lesotho 11. 33.1 177.7 0.745 0.014 52.035
Lettonie 77. 54.6 223.6 1.469 0.015 98.975

Liban 19. 33.1 130.3 1.007 0.023 43.345
Liberia 18. 54.6 403.4 0.978 0.018 54.276
Libye 44. 90. 962.9 0.867 0.012 75.203

Liechtenstein 11. 2. 4.5 0.771 0.035 21.777
Lituanie 111. 33.1 257.2 1.55 0.008 185.709

Luxembourg 300. 4.5 75.9 1.498 0.009 158.903
Macédoine 117. 33.1 139.8 1.548 0.019 81.828
Madagascar 72. 90. 727.8 1.304 0.009 139.092

Malaisie 169. 54.6 626.4 1.064 0.007 145.646
Malawi 34. 54.6 304.9 1.078 0.018 60.539

Maldives 201. 20.1 113.3 1.27 0.012 102.636
Mali 38. 148.4 1274.1 1.089 0.018 60.363
Malte 67. 2.7 26.6 1.131 0.011 100.267
Maroc 137. 90. 871.3 1.359 0.012 115.516

Maurice 143. 4.5 91.8 1.121 0.013 86.371
Mauritanie 20. 148.4 837.1 1.063 0.017 62.08
Mexique 300. 148.4 1958.6 1.343 0.009 152.487

Micronésie 6. 7.4 464.1 0.1 0.004 23.078

Figure 185-3. Estimation des dimensions fractales territoriales à l’échelle étatique
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État
Nombre
de lieux

Échelle de

coupure HkmL
Étendue HkmL

Dimension
fractale

territoriale

Erreur
Variable t

de

Student
Moldavie 37. 33.1 281.5 1.262 0.011 114.507
Monaco 4. 1.1 1.1 0. 0. 0.

Mongolie 25. 148.4 735.1 0.952 0.022 44.08

Montenegro 254. 33.1 424.1 1.469 0.011 133.049
Mozambique 45. 148.4 1141.4 1.037 0.011 91.286

Namibie 39. 244.7 1152.9 1.169 0.02 59.018
Nauru 1. 22 026.5 1152.9 0. 0. 0.
Népal 57. 54.6 376.2 1.154 0.013 89.055

Nicaragua 74. 54.6 399.4 1.256 0.011 116.292
Niger 51. 90. 765.1 1.102 0.012 95.048

Nigeria 300. 90. 982.4 1.523 0.009 171.804

Norvège 300. 90. 1436.6 1.158 0.01 119.944
Nouvelle-Zélande 275. 33.1 1248.9 1.231 0.008 152.673

Oman 26. 90. 601.8 1.014 0.022 45.528
Ouganda 90. 90. 544.6 1.326 0.019 70.061

Ouzbekistan 189. 54.6 720.5 1.239 0.008 151.546
Pakistan 294. 54.6 1261.4 1.237 0.006 191.611

Palau 17. 20.1 391.5 0.516 0.008 63.914
Panama 75. 33.1 239.8 1.299 0.012 105.88

Papouasie - Nouvelle-Guinée 39. 148.4 943.9 1.168 0.019 61.602

Paraguay 229. 33.1 837.1 1.18 0.006 200.922
Pays-Bas 295. 20.1 281.5 1.5 0.006 256.443

Pérou 291. 90. 1352.9 1.401 0.007 209.528
Philippines 123. 90. 837.1 1.197 0.011 106.727

Pologne 300. 90. 589.9 1.634 0.012 140.755
Portugal 300. 33.1 1022.5 1.005 0.008 125.559

Qatar 13. 33.1 90.9 1.01 0.057 17.735
Centrafrique 43. 148.4 749.9 1.209 0.02 60.287

République dominicaine 57. 33.1 200.3 1.392 0.015 95.092

Roumanie 300. 54.6 497.7 1.586 0.009 182.688
Royaume-Uni 300. 33.1 804.3 1.274 0.006 215.296

Russie 300. 244.7 3041.2 1.102 0.008 145.396
Rwanda 12. 33.1 120.3 1.101 0.024 45.429

Saint-Kitts-et-Nevis 17. 7.4 30.9 0.912 0.033 27.46
Saint-Marin 9. 2.7 5.6 1.313 0.082 16.101

Saint-Vincent-et-les-Grenadines 10. 2.7 16.6 0.469 0.016 30.25
Sainte-Lucie 12. 4.5 19.9 0.686 0.026 26.118

Salvador 113. 33.1 125.2 1.371 0.014 99.558
Samoa 251. 4.5 67.4 1.181 0.006 185.376

Figure 185-4. Estimation des dimensions fractales territoriales à l’échelle étatique

  357



État
Nombre
de lieux

Échelle de

coupure HkmL
Étendue HkmL

Dimension
fractale

territoriale

Erreur
Variable t

de

Student
Sao-Tomé-et-Principe 6. 7.4 130.3 0.256 0.01 26.377

Sénégal 62. 90. 459.4 1.309 0.019 68.057
Serbie 254. 33.1 424.1 1.469 0.011 133.049

Seychelles 5. 4.5 7.8 0.124 0.129 0.961
Sierra Leone 33. 54.6 247.2 1.208 0.016 75.677

Singapour 1. 22 026.5 247.2 0. 0. 0.

Slovaquie 167. 33.1 206.4 1.533 0.008 193.12
Slovénie 264. 12.2 130.3 1.476 0.007 200.016
Somalie 63. 148.4 1043.1 1.252 0.014 88.35
Soudan 133. 244.7 1685.8 1.359 0.011 120.336

Sri Lanka 74. 54.6 221.4 1.277 0.021 61.229
Suède 108. 90. 1130. 1.143 0.01 117.238
Suisse 300. 33.1 206.4 1.39 0.01 133.905

Suriname 14. 20.1 102.5 0.59 0.016 36.989
Swaziland 29. 33.1 107.8 1.321 0.023 57.546

Syrie 50. 90. 502.7 1.28 0.019 69.017
Tadjikistan 81. 33.1 407.5 1.046 0.009 114.506

Taïwan 98. 20.1 301.9 1.13 0.008 146.384
Tanzanie 241. 90. 1118.8 1.499 0.01 157.491

Tchad 49. 148.4 888.9 1.2 0.012 98.124
Tchéquie 300. 33.1 249.6 1.517 0.009 177.491
Thaïlande 296. 90. 757.5 1.326 0.009 139.982

Togo 28. 54.6 151.4 1.252 0.034 37.008
Tonga 9. 4.5 162.4 0.177 0.005 32.453

Trinité-et-Torbago 22. 12.2 103.5 0.777 0.011 69.71
Tunisie 211. 33.1 368.7 1.468 0.009 167.651

Turkménistan 58. 148.4 772.8 1.194 0.014 82.709
Turquie 300. 90. 658.5 1.633 0.009 183.83
Tuvalu 8. 90. 407.5 0.74 0.026 28.612
Ukraine 300. 90. 828.8 1.546 0.007 222.167
Uruguay 39. 90. 512.9 1.228 0.021 57.186

Vanuatu 8. 54.6 247.2 0.385 0.02 19.591
Venezuela 105. 90. 665.1 1.329 0.012 114.019
Viêt-nam 68. 90. 692.3 1.197 0.011 109.412

Yemen 39. 90. 459.4 1.121 0.015 74.757
Zambie 73. 148.4 1032.8 1.328 0.016 83.392

Zimbabwe 36. 90. 626.4 1.268 0.012 109.711

Figure 185-5. Estimation des dimensions fractales territoriales à l’échelle étatique
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Arrondi : 0,001

Moyenne : 1,156

Écart-type : 0,322

Erreur sur la moyenne : 0,023

Arrondi : 0,01

Moyenne : 1,16

Écart-type : 0,32

Erreur sur la moyenne : 0,02

Arrondi : 0,1

Moyenne : 1,2

Écart-type : 0,3

Erreur sur la moyenne : 0,1

Figure 186. Statistique des dimensions fractales territoriales centrées et réduites

Continent Nombre d'États

Dimension

fractale

territoriale

moyenne

Écart-type
Erreur sur la

moyenne

Afrique 53 1,097 0,349 0,048

Amérique 35 1,110 0,270 0,046

Eurasie 91 1,229 0,326 0,034

Océanie 14 0,683 0,458 0,121

Figure 187. Dimension fractale territoriale moyenne en fonction des continents
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Les distributions du nombre d’habitants suivent une loi de nature fractale démontrée par le fait que
l’exposant de Pareto varie lui-même en fonction de la résolution avec laquelle on filtre les données statis-
tiques.  De  plus,  les  répartitions  spatiales  de  l’établissement  humain  se  structurent  également  en  échelle.
Cela  revient  à  dire  que  le  processus  de  conquête,  d’appropriation  ou  d’humanisation  d’un  lieu  par  une
population est fractal, et que la morphologie engendrée par la constitution d’un réseau entre ces lieux l’est
également.  Bien  que  le  processus  et  la  morphologie  n’aient  pu  être  étudiés  autrement  que  de  manière
indépendante,  cette  double  nature  fractale  n’est  sans  doute  pas  un  hasard.  La  fractalité  de  l’un  devrait
expliquer  celle  de  l’autre  (et  vice  versa).  Le  système  urbain  entendu  comme  le  contenant  du  système  de
peuplement  et  de  la  répartition  spatiale,  est  donc  un  système  multi-échelle  par  construction  spontanée,
comme on a pu le vérifier par une approche territoriale à l’échelle étatique. Tout cela explique, en partie, la
structure  fractale  des  éléments  bâtis  et  des  réseaux  de  connexion  entre  les  lieux  qu’ils  soient  terrestres,
fluviaux ou maritimes à bien plus grande échelle. L’établissement humain se caractérise donc avant tout par
son continuum scalaire, ce qui n’a pas assez été perçu jusqu’alors. Ceci ouvre des perspectives fondamen-
tales dans la mesure où une telle régularité relevant de processus sans sujet ne peut être dépendante que de
règle dépassant l’humanité elle-même.
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18
Conclusion générale

L’échelle, en géographie, est plus qu’un concept : c’est une catégorie générale au même titre que le
mouvement. Tout au long de cette thèse, il fut montré qu’une variable d’échelle était relative à un état  de
référence.  Ceci  revient  à  dire  que,  si  cet  état  est  mal  défini,  l’ensemble  des  mesures  opérées  sur  un  objet
géographique  n’aura  pas  de  sens.  Dans  chaque  cas  étudié  dans  cette  thèse,  cet  état  fut  décrit  de  manière
aussi  précise  que  possible.  Cependant,  chacune  des  mesures  opérées  dépend  bien  de  cet  état :  si  on  le
modifie,  les  mesures  peuvent  changer,  mais  il  est  impossible  de  s’en  extraire.  On  ne  peut  alors  comparer
deux  séries  de  mesures  qu’avec  la  connaissance  de  leurs  états.  Les  fractales  sont  donc  fondamentales  en
géographie,  car  elles  montrent  qu’une mesure  aussi  précise soit-elle  n’est  jamais  absolue ;  elle  dépend  de
l’échelle  de  résolution  et  de  l’échelle  de  référence.  La  fractalité  enseigne  même que  plus  une  mesure  est
précise, plus elle risque de n’avoir aucun sens, si on ne prend pas en compte cette structure multi-échelle.

Ceci dit, deux solutions pratiques ont toujours permis aux géographes de contourner empiriquement
le problème de la fractalité :

1. travailler à la même échelle de mesure pour tous les objets d’étude cartographiés ;
2. préciser  les  échelles  auxquelles  le  calcul  a  été  effectué,  en  ayant  compris  que  sans  cette

indication, la mesure n’avait aucun sens.

Cette thèse a montré qu’il  était possible de définir et de quantifier un objet multi-échelle pour lui-
même,  et  ainsi  montrer  qu’il  est  possible  d’intégrer  toutes  les  échelles  possibles  d’une  structure  géo-
graphique donnée.

L’échelle n’est donc pas un accessoire. Qu’elle soit qualitative (ordre de grandeur), ou qu’elle soit
quantitative  (échelles  numériques),  elle  renvoie  aux  idées  de  taille  et  d’information.  En  effet,  il  convient
toujours  de  trouver  un  compromis  entre  la  taille  réelle  de  l’objet  et  les  informations  qu’il  contient.  D’un
point  de  vue  plus  technique,  les  structures  multi-échelles  sont  omniprésentes  en  géographie,  mais  il  est
difficile de les quantifier. La raison est double, soit il y a trop d’informations, ce qui rend les calculs impossi-
bles,  soit  il  n’y a pas assez  d’informations sur  tous les  niveaux,  car  il  existe un  niveau privilégié  (état  de
référence),  niveau  où  l’on  analyse  habituellement  tel  ou  tel  objet,  empêchant  la  mise  en  évidence  de  la
structure multi-échelle.
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Quoi qu’il en soit, un objet géographique possède deux échelles limites : sa résolution et son éten-
due.  Si,  en  géographie,  il  est  possible de définir  une  étendue maximale (la  surface de la terre),  il  est  plus
difficile  de  caractériser  une  résolution  minimale.  Est-ce  le  kilomètre ?  Est-ce  le  mètre ?  Est-ce  le  mil-
limètre ?  Le  choix  de  cette  dernière  dépend  apparemment  de  l’objet  étudié,  et  au  fond  du  projet  que  se
donne  la  géographie.  Ce  dernier,  dans  ses  caractéristiques,  doit  comporter  une  définition  d’une  gamme
scalaire. Personne en géographie ne soutiendra que le micromètre est  géographique, personne non plus ne
prétendra que le parsec est géographique. L’échelle de référence en géographie semble être celle autour de
laquelle tout  se combine,  celle de  l’Homme. Reste  à connaître  l’étendue de  la gamme vers les  grandes et
vers les petites échelles, en géographie humaine, ce pourrait être 100  et 107  m ; en géographie physique,10-4

et  108  m  sur  ces  bases  des  résolutions  plus  opérationnelles  vis-à-vis  du  projet  peuvent  être  définies.  Par
exemple, pour les structures urbaines, le mètre semble être le plus approprié. Par contre, pour le réseau de
ces  structures  urbaines,  le  kilomètre  semble  être  un  bon  compromis,  car  si  l’on  conservait  le  mètre,  la
structure en échelle serait probablement incalculable. De plus, même si elle l’était, il n’est pas certain que
cela apporte beaucoup d’informations sur l’état d’échelle de la structure spatiale.

C’est  tout  le  problème  du  M.A.U.P.  (Modifiable  area  unit  problem)  qui  constate  qu’une  surface
pour un objet géographique donné change en fonction de la résolution. Toutefois, ce n’est un problème que
si l’on cherche une surface absolue. En effet, ce constat n’est que la définition d’une fractale, ce qui revient
à  prétendre  que la  solution  recherchée  par  le  M.A.U.P.  ne  peut  aboutir  qu’à  une impasse.  Cependant,  les
fractales  réelles  possèdent,  en  général,  une  ou  des  transitions  fractal - non  fractal.  Dans  ce  cadre,  si  on
effectue une mesure dans le domaine non fractal, aucune variation de mesure de la surface ne sera significa-
tive,  alors  que  dans  le  domaine  fractal,  les  variations  de  surfaces  seront  telles  que  trouver  une  surface
constante  devient  impossible.  Le  M.A.U.P.  n’est  donc  pas  un  problème  si  l’on  se  place  dans  un  cadre
fractal. De plus, les graphes bi logarithmiques permettent de définir une échelle de coupure correspondant à
une résolution « optimale » qui définit la dernière agrégation sans perte d’informations.

L’espace  de  contrôle  de  l’espace  géographique  recherché  en  introduction  est  donc  l’espace  des
échelles. En effet, s’il existe une infinité de configurations spatiales qui se déploient dans l’espace terrestre,
il  n’existe  que  quelques  configurations  scalaires,  ce  qui  rend  objectivables  toutes  les  études  mor-
phologiques  en  géographie.  Les  trois  objectifs  fixés  en  introduction  ont  donc  été  atteints.  Toutefois,  il
convient de distinguer les objectifs 1 et 2 de l’objectif 3.

L’objectif  1  qui  souhaitait  montrer  le  lien  entre  l’étude  des  formes  géographiques  et  la  relativité
d’échelle,  et  l’objectif  2  qui  voulait  définir  un  cadre  multi-scalaire  théorique  général  capable  d’expliciter
les  structures  scalaires  existant  en  géographie,  ont  largement  été  éprouvés.  Par  exemple,  les  expressions
« système  d’échelle »,  « généralisation  cartographique »,  etc.,  renvoient  toutes  à  l’idée  de  fractalité  des
objets géographiques, mais surtout à celle de relativité d’échelle puisqu’il  n’existe aucune échelle absolue
les caractérisant, au mieux il n’y a que des niveaux privilégiés. De ce point de vue, la théorie de la relativité
d’échelle a permis d’expliciter, c’est-à-dire de se poser en cadre de compréhension, d’un certain nombre de
phénomènes observés ou observables en géographie.
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Si  les  objectifs  1  et  2  ont  été  atteints,  l’objectif  3  qui  consistait  en  l’articulation  du  temps  et  de
l’espace,  et  de  leurs  échelles  respectives  dans  une  démarche  géographique,  a  été  partiellement  atteint.  Il
faudrait arriver à construire systématiquement un espace à cinq dimensions complet (dimension temporelle,
trois  dimensions  spatiales  et  dimension  d’échelle).  Au  minimum,  si  l’espace  est  isotrope,  il  y  a  six  vari-
ables :  le  temps,  la  résolution  temporelle,  l’espace  en  trois  dimensions  avec  une  résolution  spatiale  iden-
tique pour la longueur, la largeur et la hauteur (Nottale, 2010). Toutefois, dans le cas d’une anisotropie, au
minimum, il existe huit variables : le temps, la résolution temporelle, la largeur, la résolution de la largeur,
la longueur, la résolution de la longueur, la hauteur et la résolution de la hauteur (Nottale, 2010). S’il existe
de nombreux développements dans la théorie de la relativité d’échelle permettant cela, leur complexité est
un frein à leur éventuel développement en géographie (Nottale, 2010). En revanche, il est  fondamental de
poser  le  problème,  car  la  construction  d’une  théorie  générale  de  la  géographie  ne  peut  se  réaliser  qu’à
travers une médiation entre les variables du mouvement et  celles d’échelles. Toutefois,  la troisième partie
de cette thèse  qui  étudiait  l’évolution  de la répartition  des châteaux dans  le temps et  dans la  construction
territoriale, a montré que s’il était rarement possible de construire un espace à cinq dimensions en géogra-
phie,  il  demeure  possible  d’en  réaliser  des  coupes  qui  complètent  l’approche  historique  et  l’approche
spatiale.  De  ces  faits,  cet  objectif  reste  largement  prospectif  tant  dans  le  champ  phénoménal  que  dans  le
champ théorique.

Pour conclure,  toutes ces considérations  ne signifient  pas  que les  variables  relatives à la  catégorie
du  mouvement  doivent  être  négligées  dans  une  analyse  géographique,  bien  au  contraire.  Toutefois,  il
semble qu’il soit préférable de commencer toute analyse géographique par une analyse en échelle, puis par
une analyse spatiale ou temporelle, et enfin, par une combinaison entre échelles et mouvement, mais est-ce
suffisant pour caractériser un objet géographique ? Il semble que la réponse soit négative.

Pour y remédier, trois grands projets peuvent être proposés pour ouvrir cette thèse vers de nouvelles
perspectives de recherches.

18.1. Projet 1. De la nécessité de rapprocher l'information et l'échelle

L’échelle  est  une  catégorie  qui  se  distingue,  entre  autres,  du  mouvement  (Forriez  et  alii,  2009).
Cependant, une autre notion a été largement évoquée sans être clairement définie : l’information. Jean-Paul
Delahaye (1999, p. 14) précisait que l’information n’a jamais été définie de manière absolue. Par contre, il
existe au moins trois grandes théories qui font appel à cette notion : la théorie des jeux de John von Neu-
mann (en 1944) (Guerrien, 1995 ; Giraud, 2009), la théorie de l’information de Claude Shannon (en 1948)
et  la  théorie  algorithmique  de  l’information  d’Andreï  Nikolaïevitch  Kolmogorov  (dans  les  années  1960),
mais aucune ne définit clairement le terme. Il  est vrai toutefois qu’il existe des variables mesurant le con-
tenu brut d’information ou la valeur de l’information. Jean-Paul Delahaye a défini la première comme étant
« le nombre minimal de questions oui/non à poser pour trouver la valeur donnée » ; la seconde est fixée par
l’objectif  porté par  cette information.  En géographie,  ces deux notions sont  rarement  quantifiables. Il  faut
donc généralement se contenter d’une description littéraire.
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Pour  insister  sur  l’aspect  fondamental  de  cette  notion,  on  peut  rappeler  que  lorsque  l’on  définit
littérairement  une  fractale,  l’obligation  d’utiliser  le  terme  « information »  est  presque  naturelle.  Un  objet
fractal se caractérise par le fait que, lorsque l’on lui applique un facteur d’échelle, le contenu de son informa-
tion change. Cette définition pourrait faire croire qu’information est synonyme de résolution, mais celle-ci
possède  une  définition  beaucoup  trop  restreinte  par  rapport  à  celle  que  l’on  souhaiterait  donner  au  mot
« information ». Autrement dit,  pour avoir une information, il  faut une résolution (Delahaye, 1999, p. 23),
mais une information peut exister sans résolution. La meilleure approche du concept serait de prétendre que
l’information, comme l’échelle, est une catégorie dans laquelle différentes variables existent ou coexistent.
Ainsi,  à  l’instar  de la  résolution,  de  la  dimension fractale  et  de l’accélération d’échelle  sont  des variables
entrant dans la catégorie « échelle », l’entropie de Claude Shannon ou la valeur de l’information (mesurée
par l’inverse de la probabilité) sont des variables caractérisant la catégorie « information ».

La  Commission  européenne  qualifia  notre  société,  il  y  a  une  dizaine  d’années,  de  « société  de
l’information ». Bernard Stiegler et l’association Ars Industrialis (2006) montrent à quel point cette expres-
sion est dangereuse, car ces auteurs pensent qu’ils existent une confusion non innocente entre information,
savoir  et  connaissance.  En  effet,  ces  trois  termes  ne  sont  absolument  pas  synonymes.  L’objectif  de  cette
thèse  a  été  d’essayer  de  comprendre  l’organisation  des  objets  géographiques,  ou,  en  d’autres  termes,  et
même si  l’expression  est  maladroite,  de  produire  de  la  connaissance  géographique.  Cependant,  il  est  évi-
dent que, pour y parvenir, cela nécessite des informations et des savoirs (savoir-faire, savoir-vivre, savoir-
être, etc.).

18.1.1. L'information

En  règle  générale,  l’information  fait  référence  aux  données  brutes  ou  aux  données  prétraitées.
L’information géographique est diverse et  variée ; cette thèse l’a montrée, mais, quelque part, les données
utilisées  sont-elles  dignes  de  confiance ?  La  classification  des  qualificatifs  du  mot  « information »  par  la
théorie des jeux fournit des éléments de réponse.
18.1.1.1. Le contenu brut de l'information

La théorie des jeux opère le classement suivant :

1. les jeux à information complète et parfaite ;
2. les jeux à information complète, mais imparfaite ;
3. les jeux à information incomplète

Avant de poursuivre, une précision s’impose : le terme « jeu » ne sera pas débattu ; seule l’informa-
tion sera analysée. Lorsqu’il  y a information complète, chaque joueur connaît  toutes les données du prob-
lème pour lui et pour les autres (Guerrien, 1995). Dans le cas où il n’y a aucun coup simultané, le déroule-
ment du jeu se fait de manière strictement séquentielle ; dans ce cas, l’information est parfaite. Dans le cas
contraire,  l’information  est  dite  imparfaite,  puisque  les  coups  simultanés  introduisent  un  certain  flou.
Toutefois, le nombre de combinaisons possibles est limité. Enfin, l’information est dite incomplète lorsqu’il
existe trop d’incertitudes, ou des lacunes au niveau du contenu de l’information.

Si on analyse le contenu de l’information des données utilisées pour opérer les différentes mesures
multi-échelles dans cette thèse, on s’aperçoit que seules deux bases de données possèdent une information
parfaite et  complète ;  trois bases ont une information parfaite, mais incomplète ; deux bases, une informa-
tion  imparfaite  et  complète ;  une  base,  une  information  imparfaite  et  incomplète  (Figure  188).  Ainsi,  du
point de vue du contenu brut d’information, les données utilisées ne présentent aucun problème.

364   



Complète Incomplète

Parfaite

• Réseau

hydrographique des

Gardons - RESEAU 2

• Structures bâties de

l'agglomération de

Monbéliard

• Réseau

hydrographique des

Gardons - RESEAU 1

• Base Catiau - Aspect

spatial

• Base Tageo

Imparfaite

• Catalogue des images

Landsat utilisé pour

mesurer les taches

urbaines

• Images Mappy

de la « ville

d'Avignon »

• Base Catiau - Aspect

temporel

Figure 188. Tableau résumant les données utilisées dans cette thèse en termes d’information

18.1.1.2. La valeur de l'information

Néanmoins, si l’on s’interroge sur les sources des informations utilisées, le problème de l’informa-
tion se pose différemment. En effet, on se place dans la position d’une critique historique qui correspond à
un  ensemble  de  procédés  techniques  permettant  de  peser  la  valeur  des  sources.  Il  existe  deux  types  de
critiques :  la  critique  externe,  renvoyant  à  des  informations  extérieures  à  la  source  utilisée,  et  la  critique
interne, renvoyant aux informations fournies par la source utilisée (Popper, 1998).

La critique  externe commence d’abord par  dresser  la  critique d’identité  de la  source en répondant
aux  trois  questions  suivantes :  « Qui  ou  quoi ?  Quand ?  Où ? ».  Toutes  les  données  utilisées  ont  des
réponses  à  ces  questions,  même  dans  le  cas  de  la  base  Tageo.  Ensuite,  la  critique  de  véracité  intervient.
Toutefois,  il  faut  bien  la  distinguer  de  celle  d’authenticité.  La  première  répond  à  la  question  suivante :
« Les données sont-elles vraies ou fausses ? ». Quant à l’authenticité, elle est garantie, en principe, par une
autorité.  Ainsi,  des  données  fausses  peuvent  être  authentiques  sans  aucune  difficulté.  C’est  à  travers  ces
deux problèmes qu’un certain nombre de données peuvent être problématiques à l’instar de la base Tageo

(cf.  chapitre 16). Enfin,  la  critique de restitution pose la question suivante :  « Travaille-t-on sur la  donnée
originale  ou  sur  une  copie ? »  En  règle  générale,  le  chercheur  est  amené  à  formuler  une  telle  question
lorsqu’il y a eu des erreurs de traduction évidente d’un texte anglais en un texte français, par exemple, ou
encore, lorsqu’il  y a une erreur de saisie flagrante. Quoi qu’il  en soit,  aucun chercheur, mis à part l’histo-
rien,  ne  travaille  avec  des  originaux,  ce  sont  généralement  des  copies  de  copies.  Cela  se  transcrit  par  le
niveau de la copie à travers ce que l’on appelle un strema codium qui correspond à un arbre remontant à la
source  originale.  L’information,  même  complète  et  parfaite,  est  donc  difficilement  maîtrisable.  Aussi,  il
faut généralement faire avec ce que l’on a (Figure 189). Par ailleurs, la critique interne des sources apporte
d’autres problèmes.
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Critique d'identité Critique de véracité Critique de restitution

Gardons - RESEAU 1 Extrait de la base

CARTHAGE

Hréalisée par le

Ministère de

l'Écologie et du

Développement

Durable HMEDDL
et par l'IGNL

618 branches du

réseau H2006L
La restitution se situe au

moins au 3e niveau. Ce sont

des images vectorielles

gérées à partir d’un fond de

carte au 1 ê 50 000e H2e

niveauL. Le 1er niveau

correspond à l’esquisse de la

carte dessinée par un

ingénieur IGN.

Gardons - RESEAU 2
1 694 branches

du réseau H2006L

Images Landsat

des taches urbaines

Base organisée par

Christopher Small

Base organisée par

Ann Bryant

Données capturées

par la NASA

101 images

utilisables sur

131 images

La restitution se situe au

moins au 2e niveau puisque

que ce sont des images

modifiées à partir des

captures opérées par un

satellite Landsat H5 ou 7L.

Images Mappy de la

« ville d’Avignon »
Entreprise privée

6 images

capturées en

mars 2008

?

Répartition des

structures bâties de

l’agglomération de

Montbéliard

Communauté

d’agglomération

de Montbéliard

?

La position des bâtiments est

certainement issue d’une

numération du cadastre des

différentes communes

composant l’agglomération

H3e niveauL.
Base Catiau – Aspect

spatial

Carte Blay

Quid

Carte datant

de 2004
?

Base Catiau – Aspect

temporel

Charles-Laurent Salch,

Jean-Pierre Babelon,

Yvan Christ,

MCFAPH,

Quid

La documentation

utilisée est

relativement

ancienne. Seul

le Quid est

régulièrement

remis à jour,

mais il ne cite

pas ses

références.

La restitution se situe au

moins au 3e niveau pour les

dictionnaires ou 4e niveau

pour le Quid, le 1er niveau

correspondant aux sources

historiques ou

archéologiques et le 2e aux

différentes publications

portant sur ce 1er niveau.

Base Tageo Nicos Bourbaki ?

La restitution se situe au

moins au 3e niveau, puisque

les différents organismes ont

récoltées les données H1er

niveauL, puis les ont saisies

H2e niveauL.
Figure 189. Critique externe des données utilisées dans la thèse
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La critique  interne  commence d’abord  par  une critique  d’interprétation :  « Quel  est  le  sens  de  ces
sources ? Pourquoi et comment les a-t-on créées ? ». Aujourd’hui, répondre à ces questions est relativement
facile mais fastidieux. Ensuite, vient la critique d’exactitude, la source se trompe-t-elle ? Seule une compara-
ison avec d’autres données peut fournir une réponse à cette question. Enfin, l’analyse critique s’achève par
une critique de sincérité, la  source nous trompe-t-elle ? Il  est  souvent  extrêmement difficile de répondre à
ces  deux  dernières  questions.  Pour  trancher,  il  faut  s’interroger  sur  la  raison  d’une  quelconque  erreur
volontaire. Pourquoi nous fournirait-on des données fausses ? Si l’on reprend l’exemple de la base Tageo,
il  existe  des  erreurs  d’inattention  que  l’on  peut  expliquer  par  le  non  renouvellement  des  données  rang -
taille  au  cours  des  années,  ou  par  des  erreurs  de  saisie,  mais  les  erreurs  intentionnelles  semblent  inexis-
tantes. Ainsi, ces informations sont malgré tout utilisables (Figure 190).

Critique d'interprétation Critique d'exactitude Critique de sincérité

Gardons - RESEAU 1 Obtenir une

meilleure

approche de

l'aménagement du

territoire

Quelques erreurs

dans la saisie des

nœuds entre les

différentes

branches.

A priori, les données

n’ont aucune raison

d’être malhonnêtes.
Gardons - RESEAU 2

Images Landsat

des taches urbaines
Objectif inconnu ?

A priori, les données

n’ont aucune raison

d’être malhonnêtes.

Images Mappy de la

« ville d’Avignon »

Constituer un

itinéraire de

voyage

Aucune erreur

visible

A priori, les données

n’ont aucune raison

d’être malhonnêtes.

Répartition des

structures bâties de

l’agglomération de

Montbéliard

Objectif fiscal
Aucune erreur

visible

A priori, les données

n’ont aucune raison

d’être malhonnêtes.

Base Catiau – Aspect

spatial

Dresser une carte

routière et

touristique

Aucune erreur

visible

A priori, les données

n’ont aucune raison

d’être malhonnêtes.

Base Catiau – Aspect

temporel

Données réalisées

dans un but de

synthèse

Aucune erreur

visible, mise à part

celles découvertes

par la confrontation

de la documentation

A priori, les données

n’ont aucune raison

d’être malhonnêtes.

Base Tageo

Données

synthétisées dans

un but inconnu

Base incomplète

dans la localisation

des lieux qu’elle

cite

A priori, les données

n’ont aucune raison

d’être malhonnêtes.

Figure 190. Critique interne des données utilisées dans la thèse

Si ces critiques des sources de données sont indispensables, il est bon de rappeler que « l’informa-
tion ne se transformera pas en connaissances ou en savoir-faire, mais en accumulation de données intraita-
bles »  (Stiegler  et  Ars  Industrialis,  2006).  D’ailleurs,  le  chemin  est  long  et  parsemé  d’embûches  pour
arriver  à  la  connaissance  géographique.  Cependant,  une  étape  intermédiaire  est  nécessaire :  transformer
l’information en savoirs (savoir-faire, savoir-vivre, etc.).
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18.1.2. Les savoirs

Les  savoirs  sont  une  synthèse  organisée  des  informations.  Ils  correspondent  à  des  informations
vérifiées, c’est-à-dire maîtrisées. Finalement, ce sont des clés ouvrant la porte de l’instrumentalisation des
informations. Ainsi, on parle de savoir-faire, de savoir-vivre, de savoir-être, etc. De plus, les savoirs sont de
deux natures : les « savoirs empiriques » que l’on ne peut acquérir que par l’expérience, la pratique, dans tel
ou tel domaine, et les « savoirs théoriques » que l’on acquiert au fur et à mesure au contact des autres qui
narrent  leurs  propres  expériences.  Pour  finir,  dans  le  cadre  des  savoirs,  il  est  possible  de  formuler  des
prédictions  qui  fonctionnent  bien  et  qui  soient  correctement  quantifiées  (Thom,  1993).  Autrement  dit,  les
savoirs peuvent satisfaire des objectifs, ce qui n’est pas le cas de la connaissance.

18.1.3. La connaissance

La  théorie  de  la  connaissance  (ou  gnoséologie)  est  une  branche  de  la  philosophie  extrêmement
importante. La connaissance correspond à la maîtrise des savoirs par un individu. Platon donne une défini-
tion  complémentaire :  la  connaissance  est  l’intersection  entre  les  vérités  (scientifiques)  et  les  croyances
(populaires).  De ce  fait,  la  connaissance  propose  une explication,  c’est-à-dire  un  cadre  de  compréhension
qui  ne  peut  ni  être  quantifié,  ni  être  prédictif  (Thom,  1993).  La  combinaison  de  la  gnoséologie  avec  la
philosophie des sciences définit l’épistémologie.

S’il  ne  fait  aucun  doute  que  la  géographie  possède  des  savoirs,  ceux-ci  manquent  cruellement
d’organisation.  C’est  à  ce niveau  qu’intervient  la  relativité  d’échelle qui  permet  de  construire  une théorie
scalaire  et  spatiale  générale  en  géographie.  Qu’est-ce  qu’une  connaissance  géographique  alors ?  La
meilleure  réponse  à  cette  question  a  sans  doute  été  formulée  par  Eric  Dardel.  « La  géographie  est,  selon
l’étymologie, la « description » de la Terre ; plus rigoureusement, le terme grec suggère que la Terre est une
écriture  à  déchiffrer,  que  le  dessin  du  rivage,  les  découpures  de  la  montagne,  les  sinuosités  des  fleuves
forment  les  signes  de  cette  écriture.  La  connaissance  géographique  a  pour  objet  de  mettre  en  clair  ces
signes,  ce  que  la  Terre  révèle  à  l’homme  sur  sa  condition  humaine  et  son  destin »  (Dardel,  1952,  p. 2).
Même si l’approche d’Eric Dardel reste très phénoménologique, les signes de l’écriture de la Terre peuvent
être  formulés  de  manière  mathématique  (Galilée,  1979).  De  plus,  ceux-ci  correspondent  aux  différentes
catégories générales identifiées : le mouvement, l’information, et l’échelle (Figure 191).

Catégorie Mouvement Information Échelle

Variable définissant

le système de

coordonnées

Temps

Statique ou

dynamique

Contenu de

l'information
Dimension fractale

Espace

Stationnaire ou non

stationnaire

Valeur de

l'information

Logarithme de la

longueur sur une

fractale

Variable

caractérisant l'état du

système de

coordonnées

Vitesse Entropie
Logarithme de la

résolution

Accélération
Inverse de la

probabilité
Accélération

d'échelle

Objet géographique

Transformation dans

le temps

Transformation dans

l'espace

Attribut
Transformation

en échelles

Figure 191. Système de connaissance de l'objet géographique

368   



L’objectif de la connaissance est de proposer un cadre de compréhension qui ne quantifie rien et ne
prédit  rien  (Thom,  1993).  Une  formule  qui  fonctionne  correctement  pour  un  phénomène  donné  et  qui
permet  des  prédictions,  même si  celles-ci  sont  correctes,  si  le  cadre  est  inexistant,  le  modèle  ne  peut  être
qualifié de scientifique. En effet, « l’essence même de la réflexion, c’est de comprendre qu’on n’avait pas
compris. Les pensées non baconiennes, non euclidiennes, non cartésiennes sont résumées dans ces dialec-
tiques  historiques  qui  présentent  la  rectification  d’une  erreur,  l’extension  d’un  système,  le  complément
d’une pensée » (Bachelard,  1934,  p. 178).  De ce fait,  la  relativité  d’échelle  offre un  cadre  de compréhen-
sion  dans  lequel  la  géographie  peut  s’inscrire ;  elle  permet  la  construction  d’une  véritable  théorie  géo-
graphique qui articule échelle et  mouvement.  Ainsi,  tous les  objets et  les  concepts géographiques peuvent
être définis par une méthode d’objectivation intégrant une approche multi-échelle. Pour être complet, il faut
ajouter  l’intelligence  qui  peut  correspondre  à  une  mise  en  œuvre  de  manière  stratégique  de  ses  connais-
sances dans le but d’en créer de nouvelles.

La théorie de l’information est au cœur de l’approche géographique. En règle générale, son exploita-
tion a été plutôt qualitative, car c’est un héritage de sa discipline mère, l’histoire. Cependant, cette théorie
demeure  insuffisamment  exploitée  tant  du  point  de  vue  qualitatif  que  quantitatif.  Tout  au  long  de  cette
partie, il fut défendu l’idée que l’information était une catégorie à part entière. Toutefois, une question reste
largement ouverte : « L’information est-elle une catégorie relativiste ? ».

Avant d’achever définitivement cette ouverture, il faut insister sur un projet qui peut paraître usité à
l’heure de la mondialisation, mais qui mérite tout de même une attention particulière.

18.2. Projet 2. De la nécessité de redevenir français en géographie

« Français, unissez-vous contre la pensée unique anglo-saxonne », tel est le cri que j’aimerais lancer
à la fin de cette thèse. Afin d’éviter toute ambiguïté, il ne s’agit ni de faire du chauvinisme, ni de réorienter
la  pensée  décriée  vers  une  autre  pensée  unique,  mais  de  faire  partager  une  certaine  inquiétude  face  au
triomphe de la pensée anglo-saxonne dans le domaine des sciences.

Depuis l’époque moderne, le monde de la science, au sens large du terme, oscille entre les héritages
de la pensée baconienne (anglo-saxonne) et ceux de la pensée cartésienne (française). Aujourd’hui, si l’on
interprète  ce  qu’écrivait  Karl  Popper  (1998),  la  pensée  anglo-saxonne  est  très  largement  devenue  une
pensée  unique,  dans  le  sens  où  l’empirisme  a  triomphé  du  rationalisme,  où  le  matérialisme  prédomine
l’idéalisme,  et  où  le  raisonnement  inductif  tend  à  s’imposer  sur  le  raisonnement  déductif.  De  plus,  les
pressions  économiques  qu’induisent  les  sciences,  conduisent  celles-ci  à  se  retrancher  dans  un  utilitarisme
social  malsain,  à  tel  point  qu’un  observateur  ne  comprend  l’intérêt  de  telle  ou  telle  étude  que  si  elle  est
directement applicable.
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Ce qu’il y a d’étrange, c’est que la géographie française a commencé à rejeter son héritage cartésien
à  partir  des  années  1960.  D’un  rationalisme  fondé  sur  de  nombreuses  disciplines  connexes  (la  géologie,
l’écologie,  la  météorologie,  voire  l’histoire),  la  géographie,  en  général,  est  passée  à  un  empirisme  total,
excluant la possibilité  même de construire des lois, alors que le projet initial  de l’analyse spatiale était  de
trouver les lois de l’espace géographique. Bien avant la géographie marxiste d’après-guerre, le matérialisme
était déjà au cœur de l’approche, car la géographie est avant tout une science descriptive où l’idéalisme n’a
pas  sa  place.  Toutefois,  cette  thèse  a  montré  un  certain  nombre  de  récurrences  dans  des  analyses  géo-
graphiques fondées sur des abstractions comme l’espace des échelles, donc une forme d’idéalisme. Cela est
donc  possible  pour  la  géographie  de  construire  un  raisonnement  abstrait,  source  de  toutes  connaissances
(Popper,  1998).  En  ce  qui  concerne  la  nature  du  raisonnement  géographique,  il  reste  de  nature  abductive
(Martin, 2004) que l’on se place en géographie humaine ou en géographie physique. Il s’agit d’une logique
qui, à partir des effets observés et observables, recherche à établir les causes qui les ont produits. Par exem-
ple,  pour  expliquer  la  morphologie  urbaine  (l’effet),  on  va  rechercher  les  causes  à  travers  les  différents
acteurs,  la  topographie  du  site,  etc.  Il  faudrait  donc  essayer  de  construire  un  raisonnement  déductif  en
géographie qui ne peut s’épanouir que par des abstractions ; l’espace des échelles en est un archétype de ce
point de vue.  Toutefois, ces abstractions ne peuvent  être totales :  toute loi doit  être vérifiable, c’est-à-dire
réfutable,  (pour  éviter  d’utiliser  l’anglicisme  « falsifiable »)  à  travers  des  cas  empiriques,  et  c’est  une
nouvelle fois l’intérêt des lois d’échelle, mais la possibilité de vérifier celles-ci n’est possible que si l’on ne
s’interdit  pas  de  s’inscrire  dans  une  démarche  idéaliste,  ce  que  la  géographie  marxiste  a  empêché.  Le
dernier  point  concerne l’utilité  sociale de la  géographie.  Comme toute science,  la  géographie ne sert  qu’à
produire  des  connaissances  que  les  ingénieurs  exploiteront  ou  n’exploiteront  pas,  mais  en  aucun  cas,  la
géographie,  et  en  particulier  l’analyse  spatiale,  ne  doit  sombrer  dans  l’ingénierie.  Elle  possède  suffisam-
ment  d’atouts  pour  ne  pas  rentrer,  par  exemple,  dans  la  spirale  des  systèmes  d’information  géographique
qui  ne font  que limiter  la  géographie  à  une « science  presse-bouton »,  à  une science  impensée et  impens-
able, puisque le terme « information » est lourd de conséquences comme cela a été développé dans le projet
1. La géographie mérite mieux, mais il faut qu’elle prenne le risque du changement, comme en leur temps,
Roger Brunet, François Durand-Dastès, et bien d’autres l’ont entrepris pour rebâtir une « Nouvelle géogra-
phie » à la fin des années 1960. Cependant, le problème se pose aujourd’hui différemment, car la relecture
des travaux de Paul Vidal de la Blache montre qu’il fut précurseur d’un certain nombre de développements
de  cette  « Nouvelle  géographie ».  L’heure  est  donc  à  la  synthèse  et  la  recomposition  de  la  connaissance
géographique, du moins dans l’école française qui doit refonder son unité (Chouquer, 2000).

Cette  unification  ne  peut  être,  dans  le  cadre  de  cette  thèse,  qu’un  projet  à  partir  duquel  il  faut
débattre.
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18.3. Projet 3. De l'unification de la connaissance en géographie

La géographie française a conservé une trace durable de la géomorphologie. Celle-ci fut impériale
sur l’ensemble des autres domaines pendant environ un siècle (années 1870 - années 1960). Elle se décom-
pose en deux grands sous-ensembles :  la  géomorphologie structurale et  la  géomorphologie dynamique. La
première étudie l’inertie spatiale des formes du relief ; la seconde, leur évolution, leur transformation. Cette
disposition duale est restée dans toutes les autres branches de la géographie qui ont foisonné ces cinquante
dernières  années,  qu’elles  soient  humaines  ou  physiques.  En  effet,  si  on  ne  regarde  que  la  géographie
humaine française qui s’est  reconstituée dans les années 1960, l’analyse est  fondée sur un espace dit  sup-
port  (la  structure) et  un espace dit  relatif  (qui est  dynamique).  Ce constat  est  effectif  dans l’ensemble des
branches  de  la  géographie  humaine.  Si  on  reprend  la  répartition  des  Hommes  sur  la  surface  de  la  Terre,
deux grandes disciplines existent : la géographie du peuplement qui étudie la structure (ou l’inertie spatiale)
et la géographie de la population qui étudie la dynamique démographique dans des territoires bien définis.
Systématiquement,  la  géographie  sépare  le  statique  du  dynamique.  On  peut  donc  redéfinir  la  géographie,
non  plus  par  l’approche  duale  géographie  physique  -  géographie  humaine,  mais  par  une  séparation  entre
géographie structurale et géographie dynamique.

En ce qui concerne la géographie structurale,  ce projet  a  été initié par  Gaétan Desmarais  et  Gilles
Ritchot (2000), mais il n’existe pas de géographie dynamique clairement définie.

La géographie structurale que ce projet propose, est  plus beaucoup générale que ce à quoi renvoie
l’expression dans le sens des auteurs cités précédemment. D’ailleurs, il  vaudrait  peut-être mieux l’appeler
géographie  structurelle  (Martin,  2004)  qui  renvoie  à  l’étude  générale  des  inerties  spatiales  observées  en
géographie.  A contrario,  la  géographie  dynamique  serait  la  géographie  du  changement,  de  la  transforma-
tion, de la métamorphose, de l’évolution, de la mutation, etc., soit un sens beaucoup plus large que son sens
physique. Toutefois, comment montrer qu’un objet géographique change ? Une nouvelle fois le principe de
relativité permet d’éclairer cette question. Tout dépend du système de référence. Le problème des analyses
géographiques est que, mis à part les champs de la géographie physique et de la géographie historique, les
gammes  temporelles  sont  très  courtes  puisqu’elles  sont  de  l’ordre  de  la  centaine  d’années.  Peut-on  donc
démontrer un changement structurel profond sur un pas de temps si court ? La question reste ouverte.

Les  liens  entre  géographie  structurale  et  géographie  dynamique  sont  donc  indissolubles.  Quelque
part, la géographie en affirmant une approche par la catégorie mouvement, s’est fixée un objectif impossi-
ble à atteindre, si bien que la seule possibilité pour obtenir un discours scientifique indéniable est la recon-
struction  de  la  discipline  autour  de  l’approche  complémentaire  qu’est  la  relativité  d’échelle.  Il  faut  donc
construire  directement  une géographie  dont  la  connaissance  serait  fondée  sur  ces  deux  catégories  (Figure
192). De ce point de vue, cette thèse n’a fait qu’entrouvrir quelques portes extrêmement prometteuses.

Géographie structurale Géographie dynamique

Mouvement
Temps État stable État instable
Espace État stationnaire État non stationnaire

Échelle

Dimension

fractale
État stable d'échelle État instable d'échelle

Logarithme de

la longueur

sur la fractale

État stationnaire

en échelle

État non stationnaire

en échelle

Figure 192. Tableau résumant la combinaison entre mouvement et échelle vs. géographie structurale et géographie dynamique
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On  peut  toutefois  construire  cette  double  géographie  en  mouvement  et  en  échelles  à  partir  de  la
notion  de  lieu,  car  qu’est-ce  qu’un  lieu  sinon  un  « point  structuré »  (Nottale  et  alii,  2009,  p. 11) ?  Si  on
reprend l’exemple géohistorique des châteaux, il est impossible d’aller au-delà de la résolution d’étude (le
kilomètre). Si on imagine que l’on zoome sur l’un des lieux représentant un des châteaux, et que l’on passe
à une résolution en mètre, le « point » représentant ledit château, deviendrait une étendue d’un kilomètre à
l’intérieur de laquelle on trouverait  d’autres entités que le château comme l’église, les magasins, les habi-
tats,  etc.  De  plus,  grâce  à  cette  précision  supplémentaire  dans  la  résolution,  la  position  du  château
deviendrait  elle-même  beaucoup  plus  précise.  De  même,  si  l’on  zoome  sur  ce  château  en  passant  à  une
résolution au centimètre, par exemple, on apercevrait que ce qui a toujours été représenté par un cercle ou
par  un  carré,  ne  correspond  en  rien  à  une forme  euclidienne  parfaite,  mais  à  une combinaison  de  formes
euclidiennes. On pourrait répéter l’opération en allant vers les grandes échelles géographiques à l’infini, on
ne trouverait jamais de points, au sens mathématique du terme.

Ce type de raisonnement, même s’il est souvent mal posé, domine l’approche spatiale des lieux en
géographie. Par contre, le raisonnement inverse qui consiste à lier les lieux entre eux par l’intermédiaire de
l’objet « territoire », est  rarement perçu en géographie. En effet, si  les points n’existent pas et s’il n’existe
que des « points structurés », n’importe quelle entité géographique très étendue peut devenir un point, donc
un  lieu.  N’importe  quel  territoire,  montagne,  lac,  agglomération  d’habitats,  etc.  peut  devenir  un  lieu.  On
peut  donc  construire  une  « théorie  générale  du  lieu » à  partir  de  la  relativité  d’échelle,  en  fusionnant  des
concepts  qui  ne  sont  liés  qu’à  une  certaine  échelle  d’observation,  comme  le  territoire  (au  sens  large),  la
région (au sens large), etc. Cette approche fractale du lieu permet en plus de conserver, sans contradiction,
toutes  les  approches  spatiales  développées  en  géographie  depuis  les  années  1960 :  n’importe  quel  lieu
s’exprimant à une échelle n peut devenir l’espace réceptacle d’autres lieux s’exprimant à une échelle n - 1.
Le lieu commande donc les vides et les pleins, les diffusions et les concentrations d’un espace à une échelle
donnée par rapport à une autre. Un lieu n’est donc pas un point, mais un espace caractérisé par une échelle
particulière. On constate donc que l’opposition faite entre lieux et espace en géographie est complètement
non fondée dans le sens où n’importe quel lieu est susceptible de par un changement d’échelle de devenir
un espace.

Toutefois, pour justifier l’existence d’un lieu (d’un point), il faut nécessairement que ce dernier soit
porteur  d’attributs  (Martin,  2003b,  p. 184-186),  de  caractéristiques  propres.  Si  on  reprend  de  nouveau
l’exemple  des  châteaux :  une  ville  ou  un  village  en  possèdent  un  ou  pas.  L’attribut  « château »  n’existe
donc que dans un schéma binaire oui-non. Il entre alors dans le champ de l’information. Que sait-on sur les
lieux du lieu « ville » (ou « village ») ? Cette simple question permet de comprendre la nécessité de faire de
l’information une catégorie, car un lieu n’existe que par les attributs qu’il possède qu’ils soient physiques
ou humains.

L’objet scientifique de la géographie est donc le lieu, et non l’espace (Figure 193). Le projet de la
géographie est  donc bien celui  de Paul Vidal de la Blache, comprendre la  position relative des lieux dans
l’espace  terrestre  (Vidal  de  la  Blache,  1913),  projet  auquel  il  faut  ajouter  « à  toutes  les  échelles ».  Il  faut
préciser  que,  si  on reprend l’interprétation des  résultats  de l’analyse fractale de l’agglomération de Mont-
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béliard,  on  peut  très  bien  concevoir  une  explication  de  la  dynamique  urbaine  en  faisant  abstraction  de
l’élément humain, ce qui correspond bien à l’idée même que Paul Vidal de la Blache se faisait de la géogra-
phie  humaine.  « La  géographie  humaine  ne  s’oppose  donc  pas  à  une  géographie  d’où  l’élément  humain
serait exclu ; il n’en a existé de telle que dans l’esprit de quelques spécialistes exclusifs. Mais elle apporte
une conception nouvelle des rapports entre la terre et l’homme, conception suggérée par une connaissance
plus synthétique des lois physiques qui régissent notre sphère et des relations entre les êtres vivants qui la
peuplent »  (Vidal  de  la  Blache,  1922).  La  géographie  est  bien  cette  « science  des  lieux  et  non  celle  des
hommes »  (Vidal  de  la  Blache,  1913).  Pour  conclure,  cet  objet  scientifique  « lieu »  permet  de  définir  un
certain  nombre  d’objets  d’étude.  Toutefois,  les  objets  d’étude  en  géographie  demeurent  indéfinissables :
tout ce qui possède une emprise spatiale dans l’espace terrestre peut faire l’objet d’une géographie partic-
ulière (Dauphiné, 2010). Ceci précisé, on peut s’interroger sur le devenir de toutes les études qui font de la
géographie  humaine  une  science  sociale.  Le  débat  est  lancé,  et  ne  peut  trouver  de  réponse  tranchée  dans
cette ouverture.

Projet Comprendre les lieux

Objet d'étude
Tout ce qui a une emprise spatiale sur la

surface terrestre de manière tangible ou

abstraite

Méthodes d'objectivation
Observer à différentes instants

Observer à différents endroits

Observer à différentes échelles

Figure 193. Tableau synthétisant ce que pourrait être la science « géographie »

L’objet principal de cette géographie sociale est l’étude des représentations, c’est-à-dire la manière
dont  les  individus  perçoivent  l’espace  géographique  qui  les  entoure.  Dans  ce  cadre,  il  est  évident  que  la
perception d’Accra par rapport à celle de Beijing sera fortement différente, et pourtant, dans l’étude réalisée
dans le chapitre 7, ces deux agglomérations possèdent la même dimension fractale (environ 1,7). Dès lors,
quelle place accorder à la perception en géographie, lorsque des méthodes d’objectivation montrent qu’elles
posent un problème ontologique majeur. Néanmoins, les différences ayant du sens, pourraient être définies
par d’autres paramètres.

L’unification de la connaissance en géographie passe par une réconciliation entre le lieu et l’espace.
Toutefois,  le  lieu  doit  redevenir  l’objet  central  de  la  géographie,  car  s’il  existe  plusieurs  « sciences  de
l’espace », il n’existe qu’une seule « science du lieu », entendue comme localisation sur la surface terrestre.
Cependant,  cette  science  du  lieu  ne  doit  pas  étudier  des  particularismes,  c’est-à-dire  réaliser  des  études
idiographiques  au  sens  de  Paul  Vidal  de  la  Blache,  mais  rechercher  des  régularités  dans  les  phénomènes
spatiaux  observés.  Celles-ci  ne  peuvent  être  qu’abstraites.  S’il  est  vrai  que  l’ensemble  des  configurations
spatiales  est  unique  à  la  surface  du  globe,  ce  n’est  pas  le  cas  des  lois  de  transformation  d’échelles,  par
exemple,  qui  sont  limitées  à  une  dizaine  de  cas  observés  et  observables  à  partir  desquels  il  est  possible
d’effectuer des classements beaucoup plus abstraits (cf. chapitre 7), et critiquables, non pas du point de vue
de la perception, mais de leur objectivation scientifique.
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Les trois projets proposés sont donc vitaux pour la géographie. Au sens de cette thèse, ce n’est que
par  eux  que  la  géographie  pourra  se  construire  en  une  science  autonome,  dans  le  sens  où  son  discours
scientifique  serait  fondé  sur  une théorie  bien  assise  qui  lui  serait  propre.  La  géographie  ne  doit  donc  pas
devenir une science sociale, mais rester la science des lieux de Paul Vidal de la Blache (1913). Ceci con-
duit à se départir de l’idée que tout commence et tout s’achève dans l’Homme
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20
Annexes

20.1. Table de conversion d'une variable exponentielle

x ExpHxL à 0,01 près x ExpHxL à 0,01 près x ExpHxL à 0,01 près x ExpHxL à 0,01 près

0,0 1,00 3,9 49,4 7,8 2 440,6 11,7 120 571,71

0,1 1,11 4,0 54,6 7,9 2 697,28 11,8 133 252,35

0,2 1,22 4,1 60,34 8,0 2 980,96 11,9 147 266,63

0,3 1,35 4,2 66,69 8,1 3 294,47 12,0 162 754,79

0,4 1,49 4,3 73,7 8,2 3 640,95 12,1 179 871,86

0,5 1,65 4,4 81,45 8,3 4 023,87 12,2 198 789,15

0,6 1,82 4,5 90,02 8,4 4 447,07 12,3 219 695,99

0,7 2,01 4,6 99,48 8,5 4 914,77 12,4 242 801,62

0,8 2,23 4,7 109,95 8,6 5 431,66 12,5 268 337,29

0,9 2,46 4,8 121,51 8,7 6 002,91 12,6 296 558,57

1,0 2,72 4,9 134,29 8,8 6 634,24 12,7 327 747,9

1,1 3,00 5,0 148,41 8,9 7 331,97 12,8 362 217,45

1,2 3,32 5,1 164,02 9,0 8 103,08 12,9 400 312,19

1,3 3,67 5,2 181,27 9,1 8 955,29 13,0 442 413,39

1,4 4,06 5,3 200,34 9,2 9 897,13 13,1 488 942,41

1,5 4,48 5,4 221,41 9,3 10 938,02 13,2 540 364,94

1,6 4,95 5,5 244,69 9,4 12 088,38 13,3 597 195,61

1,7 5,47 5,6 270,43 9,5 13 359,73 13,4 660 003,22

1,8 6,05 5,7 298,87 9,6 14 764,78 13,5 729 416,37

1,9 6,69 5,8 330,3 9,7 16 317,61 13,6 806 129,76

2,0 7,39 5,9 365,04 9,8 18 033,74 13,7 890 911,17

2,1 8,17 6,0 403,43 9,9 19 930,37 13,8 984 609,11

2,2 9,03 6,1 445,86 10,0 22 026,47 13,9 1 088 161,36

2,3 9,97 6,2 492,75 10,1 24 343,01 14,0 1 202 604,28

2,4 11,02 6,3 544,57 10,2 26 903,19 14,1 1 329 083,28

2,5 12,18 6,4 601,85 10,3 29 732,62 14,2 1 468 864,19

2,6 13,46 6,5 665,14 10,4 32 859,63 14,3 1 623 345,99

2,7 14,88 6,6 735,1 10,5 36 315,5 14,4 1 794 074,77

2,8 16,44 6,7 812,41 10,6 40 134,84 14,5 1 982 759,26

2,9 18,17 6,8 897,85 10,7 44 355,86 14,6 2 191 287,88

3,0 20,09 6,9 992,27 10,8 49 020,8 14,7 2 421 747,63

3,1 22,2 7,0 1 096,63 10,9 54 176,36 14,8 2 676 445,06

3,2 24,53 7,1 1 211,97 11,0 59 874,14 14,9 2 957 929,24

3,3 27,11 7,2 1 339,43 11,1 66 171,16 15,0 3 269 017,37

3,4 29,96 7,3 1 480,3 11,2 73 130,44 15,1 3 612 822,93

3,5 33,12 7,4 1 635,98 11,3 80 821,64 15,2 3 992 786,84

3,6 36,6 7,5 1 808,04 11,4 89 321,72 15,3 4 412 711,89

3,7 40,45 7,6 1 998,2 11,5 98 715,77 15,4 4 876 800,85

3,8 44,7 7,7 2 208,35 11,6 109 097,8 15,5 5 389 698,48

  387



20.2. Structure du DVD-annexes

Un DVD fournissant l’intégralité des résultats a été élaboré. Son arborescence est la suivante :

Chateaux-Annexes-Densite regroupe toutes les mesures de densité autour des châteaux et des communes.
Ø chateaux

Ø  Densite  aleatoire  :  graphiques  correspondant  à  la  variation  locale  de  la  densité  de
points aléatoires en fonction de chaque château-centre

Ø  Densite  reelle  :  graphiques  correspondant  à  la  variation  locale  de  la  densité  de
châteaux en fonction de chaque château-centre

Ø  Densite-cercles-chateaux  :  graphiques  montrant  les  anneaux  avec  un  intervalle  de
10 km en fonction de chaque château-centre

Ø  Rapport  de  densite  :  graphiques  montrant  le  rapport  entre  la  densité  aléatoire  et  la
densité réelle pour un intervalle de 10 km

Ø communes
Ø  Densite  aleatoire  :  graphiques  correspondant  à  la  variation  locale  de  la  densité  de
points aléatoires en fonction de chaque commune-centre

Ø  Densite  reelle  :  graphiques  correspondant  à  la  variation  locale  de  la  densité  de
communes en fonction de chaque commune-centre

Ø  Densite-cercles-communes  :  graphiques  montrant  les  anneaux  avec  un  intervalle  de
10 km en fonction de chaque commune-centre

Ø  Rapport  de  densite  :  graphiques  montrant  le  rapport  entre  la  densité  aléatoire  et  la
densité réelle pour un intervalle de 10 km

Gardons-Annexes
Ø Images-RESEAU-1

Ø  amont-aval :  graphiques correspondant à la  varition du rapport LC/VO moyennée de
confluence en confluence de chaque source au Pont de Ners

Ø  aval-amont :  graphiques correspondant à la  varition du rapport LC/VO moyennée de
confluence en confluence du Pont de Ners à chacune des sources

Ø diagramme LC - LC-VO : graphiques correspond aux relevés des rapports LC/VO de
confluence en confluence en fonction de chaque chemin possible

Ø  dim  globale  par  chemin  :  graphiques  correspondant  aux  dimensions  fractales  de
chaque chemin

Ø  dim locale  par  branche  :  graphiques  correspondant  aux  dimensions  fractales  locales
de chaque branche

Ø  distance  au  Pont  de  Ners  -  dim  fractale  locale  moyennee  branche  par  branche  :
graphiques correspondant à la valeur de la dimension fractale locale de chaque branche
moyennée de confluence en confluence
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Ø  distance  au  Pont  de  Ners  -  dim  locale  par  branche  :  graphiques  correspondant  aux
dimensions fractales locales de confluence en confluence en fonction de chaque chemin
possible

Ø releve de talweg

dimfractalelocale.png : carte montrant la répartition des dimensions fractales locales par
branches

variationLCVOlocal.png : carte montrant la répartition des variations du rapport LC/VO
par branches

Ø Images-RESEAU-2

Ø  amont-aval :  graphiques correspondant à la  varition du rapport LC/VO moyennée de
confluence en confluence de chaque source au Pont de Ners

Ø  aval-amont :  graphiques correspondant à la  varition du rapport LC/VO moyennée de
confluence en confluence du Pont de Ners à chacune des sources

Ø diagramme LC - LC-VO : graphiques correspond aux relevés des rapports LC/VO de
confluence en confluence en fonction de chaque chemin possible

Ø  dim  globale  par  chemin  :  graphiques  correspondant  aux  dimensions  fractales  de
chaque chemin

Ø  dim locale  par  branche  :  graphiques  correspondant  aux  dimensions  fractales  locales
de chaque branche

Ø  distance  au  Pont  de  Ners  -  dim  fractale  locale  moyennee  branche  par  branche  :
graphiques correspondant à la valeur de la dimension fractale locale de chaque branche
moyennée de confluence en confluence

Ø  distance  au  Pont  de  Ners  -  dim  locale  par  branche :  graphiques  correspondant  aux
dimensions fractales locales de confluence en confluence en fonction de chaque chemin
possible

dimfractalelocale.png : carte montrant la répartition des dimensions fractales locales par
branches

variationLCVOlocal.png : carte montrant la répartition des variations du rapport LC/VO
correspondant par branches

20.3. Mathematica en géographie

Toute cette thèse a été réalisée sur le  logiciel Mathematica, des simples calculs jusqu’à l’édition de cette thèse. Cet
outil méconnu, en géographie, emploie un codage très simple, et permet de mener à bien de nombreux projets scientifiques.
L’intérêt  pour  la  géographie  a  été  évoqué au  cours  du chapitre  6.  Aussi,  pour  conclure  sur  ce  logiciel,  on  peut  citer  Rémi
Barrère. « Il est dans la nature des problèmes scientifique de n’être ni confinés à des calculs, ni restreints à de la programma-
tion, ni réduits à de la visualisation, ni limités à de l’édition, mais de mêler un peu tout cela. Il est dans la nature des prob-
lèmes  mathématiques  de  n’être  ni  exclusivement  logiques,  ni  entièrement  numériques,  ni  purement  algébriques  mais  tout
cela à la fois. C’est pour cette raison qu’un logiciel polyvalent comme Mathematica répond à un besoin des scientifiques et
des ingénieurs. Mais nous savons bien que si le besoin engendre l’outil, ce dernier en retour crée de nouveaux besoins. C’est
pourquoi on peut s’attendre à un développement intense du calcul symbolique dans des décennies à venir » (Barrère, 2002, p.
13). Tel est l’esprit de Mathematica.

  389



390   



Table des figures

Chapitre 1.

Figure 1. Espace géographique et causalités 9

Figure 2. Espace de configuration et espace de contrôle 10

Figure 3. Typologie des morphogenèses 11

Chapitre 2.

Chapitre 3.

Figure 4. Synthèse des différents types de langage en géographie 32

Figure 5. La table des chorèmes de Roger Brunet HBrunet, 1980L 33

Figure 6. Avantages et inconvénients des chorèmes en géographie 35

Figure 7. La théorie géographique 36

Figure 8. Double typologie des modèles 41

Figure 9. Objet géographique et résolution HCuénin, 1972L 45

Figure 10. Objet ou espace 49

Figure 11. Quelques formes optimales 51

Figure 12. Formes optimales et objet géographique 51

Chapitre 4.

Figure 13. Définitions des dimensions topologiques 54

Figure 14. Agrandissement ou réduction d’un carré par un facteur 3 56

Figure 15. Agrandissement ou réduction d’un carré par un facteur 5 56

Figure 16. La courbe de Helge von Koch 57

Figure 17. Arpentage d’une courbe fractale 58

Figure 18. Loi d’échelle fractale 60

Figure 19. Loi d’échelle non fractale 60

Figure 20. Méthode de calcul d’une dimension fractale par comptage de boîtes carrées 62

  391



Figure 21. Générateur pour fabriquer une grille hexagonale 63

Figure 22. Grilles hexagonales à mailles variables 63

Figure 23. Hexagone et signe des équations de droites 64

Figure 24. Comparaison entre une mesure de dimension fractale par comptage de boîtes carrées et une mesure de dimension
fractale par comptage de boîtes hexagonales

64

Figure 25. Méthode de calcul par une grille composée de boîtes circulaires 65

Figure 26. Schéma d’une dilatation infinitésimale 66

Figure 27. Le modèle à une transition fractal – non fractal (Nottale, 1993) 67

Figure 28. Fluctuation log-périodique et mesure de la dimension fractale 68

Chapitre 5.

Figure 29. Mouvement et échelle en morphométrie 78

Chapitre 6.

Figure 30. Réseau hydrographique des Gardons (des sources jusqu’au pont de Ners) 81

Figure 31. Embranchements élémentaires d’un arbre déterministe pour k = 2 82

Figure 32. Arbre déterministe avec un générateur possédant deux embranchements 84

Figure 33. Base 2 et arbre à déterministe à deux branches 84

Figure 34. Arbre déterministe avec un générateur possédant trois embranchements 85

Figure 35. Base 3 et arbre déterministe à trois branches 85

Figure 36. Rapport entre le rayon et la longueur des branches d’un arbre 89

Figure 37. Calcul de la dimension fractale par comptage de boîtes carrées du RESEAU 1 91

Figure 38. Calcul de la dimension fractale par comptage de boîtes carrées du RESEAU 2 91

Figure 39. Classification de Horton appliquée aux Gardons 93

Figure 40. Relation entre l’ordre, l’effectif et la longueur 93

Figure 41. Classification de Horton appliquée aux Gardons 94

Figure 42. Relation entre l’ordre, l’effectif et la longueur 94

Figure 43. Tableau de mesures des dimensions fractales par comptage de boîtes carrées pour les deux représentations du réseau 95

Figure 44. Tableau de comparaison entre les mesures du RESEAU 1 95

Figure 45. Tableau de comparaison entre les mesures du RESEAU 2 95

Figure 46. Arbre du RESEAU 1 97

Figure 47. Arbre du RESEAU 2 98

Figure 48. Distribution de probabilité du rapport LC ê VO 99

Figure 49. Estimation du facteur d’échelle LC ê VO 100

Figure 50. Arborescence : niveaux et branches dans le cas de structure auto-similaire 101

Figure 51. Arborescence : modèle parabolique observé 102

Figure 52. Statistique des longueurs des branches du RESEAU 1 Hn = 618L 103

Figure 53. Statistique des longueurs des branches du RESEAU 2 Hn = 1 694L 104

Figure 54. Exemple d’un graphique bi logarithmique où la gamme d’échelle est courte 105

Figure 55. Exemple d’un graphique bi logarithmique où la gamme d’échelle est moyenne 105

Figure 56. Exemple d’un graphique bi logarithmique où la gamme d’échelle est correcte 106

392   



Figure 57. Rapport LC ê VO du chemin de la branche 6401-RESEAU 1 à l’exutoire 107

Figure 58. Relevé de la dimension fractale par branche du chemin de la branche 6401-RESEAU 1 à l’exutoire 107

Figure 59. Rapport LC ê VO du chemin de la branche 9402-RESEAU 2 à l’exutoire 107

Figure 60. Relevé de la dimension fractale par branche du chemin de la branche 9402-RESEAU 2 à l’exutoire 107

Chapitre 7.

Figure 61. Couleurs potentielles obtenues par le filtre 113

Figure 62. Extraction de la tache urbaine de Beijing 113

Figure 63. Image monochrome de la tache urbaine de Beijing 114

Figure 64. Taches urbaines de quelques agglomérations de par le monde 116 à 128

Figure 65. Tableau présentant les corrections des dimensions fractales des douze agglomérations en double 129

Figure 66. Distribution de probabilité de la dimension fractale centrée et réduite 129

Figure 67. Distribution de probabilité de la dimension fractale centrée et réduite de la base Christopher Small 130

Figure 68. Distribution de probabilité de la dimension fractale centrée et réduite de la base d’Ann Bryant 130

Figure 69. Localisation des dimensions fractales de chacune des taches urbaines mesurées 131

Figure 70. Taches urbaines, dimensions fractales mesurées et population de la ville principale 132

Figure 71. Population de la ville principale et dimension fractale de la tache 132

Figure 72. Surface relative et dimension fractale de chaque des taches 133

Chapitre 8.

Figure 73. Tableau de la résolution des images capturées d’Avignon 135

Figure 74. Images capturées de Mappy traitées pour étudier la morphologie d’Avignon 136

Figure 75. Calcul de la dimension fractale de l’image 1 138

Figure 76. Calcul des dimensions fractales des différentes images 139

Figure 77. Toutes les courbes estimées 140

Figure 78. Tableau de synthèse des dimensions fractales obtenues en fonction de leur résolution 140

Figure 79. Graphique de synthèse des résolutions en fonction des dimensions fractales obtenues 141

Figure 80. Graphique de synthèse des dimensions fractales obtenues en fonction de leur résolution 141

Figure 81. Relation quadratique entre la dimension fractale et le logarithme du nombre de boîtes comptées 142

Figure 82. Relation exponentielle entre la dimension fractale et le nombre de boîtes comptées 142

Chapitre 9.

Figure 83. Carte des éléments bâtis de Montbéliard 146

Figure 84. Calcul de la dimension fractale par la méthode de comptage de boîtes carrées 147

Figure 85. Construction d’une fractale pseudo-aléatoire à partir d’un tapis de Sierpinski 150

Figure  86.  Construction  d’une  fractale  pseudo-aléatoire  à  partir  d’un  tapis  de  Sierpinski  avec  une  condition  supplémentaire  à  la
première itération

151

Figure 87. Estimation de la dimension fractale du modèle par la méthode du comptage de boîtes carrées 152

Figure 88. Estimation par une loi de transition fractal – fractal du modèle par la méthode du comptage de boîtes carrées 152

  393



Figure 89. Schéma de synthèse de l’organisation des cinq niveaux d’organisation d’une agglomération 154

Chapitre 10.

Figure 90. Rappel épistémologique sur l'objet d'étude « motte » 161

Chapitre 11.

Figure 91. État des limites historiques connues entre 900 et 1100 d’après Robert Fossier (1968) 173

Figure 92. État des limites historiques connues entre 1100 et 1300 d’après Robert Fossier (1968) 178

Figure 93. État des limites historiques connues entre 1300 et 1400 d’après Jean Kerheve (1998) 180

Figure 94. État des limites historiques connues entre 1400 et 1500 d’après Jean Kerheve (1998) 182

Figure 95. État des limites historiques connues entre 1500 et 1700 d’après Georges Duby (1987) 184

Figure 96. État des limites historiques connues de 1700 à nos jours 186

Figure 97. Carte représentant la Flandre vers l’an 900 190

Chapitre 12.

Figure 98. Les dates calendaires observées et premières estimations de g et TC 194

Figure 99. L’ajustement de g et de TC par un tirage Monte-Carlo 195

Figure 100. La relation entre le rang et le lnHTn – TCL 195

Figure 101. Les dates théoriques obtenues par l’équation de l’évolution 196

Figure 102. L’arbre de l’évolution spatio-temporelle du site de Boves de la fin de l’empire carolingien au XXIe siècle 196

Figure 103. Exemple d’analyse radiale avec pour centre le château de Boves 198

Figure 104. Nuage de points des châteaux connus 200

Figure 105. Encadrement du nuage de points 201

Figure 106. Tableau de synthèse de la répartition des châteaux autour de Boves 202 à 206

Figure 107. Tableau de synthèse de la répartition des lieux aléatoires autour de Boves 207 à 211

Figure 108. Variation du rapport entre le nombre de lieux aléatoires et le nombre de châteaux dans chaque anneau 212

Figure 109. Tableau de synthèse des résultats de l’analyse radiale en tout lieu 214 à 218

Chapitre 13.

Figure 110. Transitions fractal – non fractal observées dans le cas de la répartition des communes centres et hameaux en dépendant
et de la répartition des châteaux dans l’espace géohistorique étudié

223

Figure 111. Représentation des grilles carrées de résolution ¶ Hen kmL contenant au moins un château pour une résolution donnée 225

Figure 112. Représentation tridimensionnelle des carrés de résolution ¶ Hen kmL et du nombre de châteaux dans chaque carré 226

Figure 113. Représentation tridimensionnelle des carrés de résolution ¶ Hen kmL et de leurs densités respectives 227

Figure 114. Représentation tridimensionnelle des carrés de résolution ¶ Hen kmL et de leurs dimensions fractales respectives 228

Figure 115.  Localisation des centres  urbains de l’espace géohistorique étudié par l’intermédiaire des pics  de dimensions fractales
« locales » avec une maille de 6,375 km

229

Figure 116. Résultats numériques de l’analyse fractale locale des châteaux HNT  = 1 413L 229

Figure 117. Résultats numériques de l’analyse fractale locale des communes centres et des hameaux HNT  = 3 738L 230

Figure  118.  Modèle  fractal – non  fractal  et  dimension  fractale  « locale »  par  grille  appliquée  aux  résultats  de  la  distribution  des
châteaux

230

394   



Figure  119.  Modèle  fractal – non  fractal  et  dimension  fractale  « locale »  par  grille  appliquée  aux  résultats  de  la  distribution  des
communes centres et hameaux en dépendant

231

Chapitre 14.

Figure 120. Dimension fractale territoriale globale de chacune des périodes géographiques 234

Figure 121. Dimension fractale territoriale de la période géographique vers 900 – vers 1100 235

Figure 122. Dimension fractale territoriale de la période géographique vers 1100 – vers 1300 235

Figure 123. Dimension fractale territoriale de la période géographique vers 1300 – vers 1400 236

Figure 124. Dimension fractale territoriale de la période géographique vers 1400 – vers 1500 236

Figure 125. Dimension fractale territoriale aux deux dernières périodes géographiques sur le territoire de la France 236

Figure 126. Dimension fractale territoriale locale moyenne 237

Figure 127. Localisation des dimensions fractales dans chaque territoire vers 900-1100 238

Figure 128. Localisation des dimensions fractales dans chaque territoire vers 1100-1300 239

Figure 129. Localisation des dimensions fractales dans chaque territoire vers 1300-1400 240

Figure 130. Localisation des dimensions fractales dans chaque territoire vers 1400-1500 241

Figure 131. Localisation des dimensions fractales dans chaque territoire vers 1500-1700 242

Figure 132. Localisation des dimensions fractales dans chaque territoire vers 1700-1900 243

Chapitre 15.

Chapitre 16.

Figure 133. Schéma des différentes lois rang – taille possibles (Forriez, Martin, 2009) 256

Figure  134.  Tableau  récapitulant  les  régressions  linéaires  effectuées  dans  l’espace  bi  logarithmique  des  rangs  et  du  nombre
d’habitants

258 à 282

Figure 135. Statistique de la pente q centrée et réduite 283

Figure 136. Tableau récapitulant l’ensemble des pentes q et des ordonnées estimées 284 à 288

Figure 137. Comparaison entre la population totale de la loi rang – taille et de la population totale respective 289 à 293

Figure 138. Distributions parétiennes observées pour chacun des États du monde 297 à 321

Figure 139. Distribution statistique de l’exposant a de Pareto 322

Figure 140. La valeur numérique des exposants a de Pareto obtenu 323 à 327

Chapitre 17.

Figure 141. Répartition des géolocalisations de la base Tageo 329

Figure 142. Analyse fractale globale de la répartition de l’établissement humain à l’échelle planétaire 330

Figure 143. Paramètres de la structure fractale globale de la répartition de l’établissement humain à l’échelle planétaire 330

Figure 144. Paramètres de la dimension fractale locale 331

Figure 145. Dimension fractale locale contenue dans chaque carré 331

Figure 146. Structure locale de la répartition de la population à l’échelle du monde 332

Figure 147. Projection du nuage de points de la population locale et de la dimension fractale locale 333

Figure 148. Loi rang – taille à l’échelle du monde avec un seuil de 144 300 habitants 334

  395



Figure 149. Distribution parétienne observée 335

Figure 150. Classe statistique et exposant de Pareto 335

Figure 151. Estimations des lois possibles pour la « dynamique d’échelle » avec un exposant de Pareto 336

Figure 152. Répartition de l’établissement humain avec un seuil de 144 300 habitants 337

Figure 153. Analyse fractale globale de la répartition de l’établissement humain avec un seuil de 144 300 habitants 337

Figure  154.  Paramètres  de  la  structure  fractale  globale  de  la  répartition  de  l’établissement  humain  avec  un  seuil  de  144 300
habitants

337

Figure 155. Dimension fractale locale contenue dans chaque carré avec un seuil de 144 300 habitants 338

Figure 156. Paramètres de la dimension fractale locale avec un seuil de 144 300 habitants 338

Figure 157. Structure locale de la répartition de la population à l’échelle du monde avec un seuil de 144 300 habitants 339

Figure 158. Projection du nuage de points de la population locale et de la dimension fractale locale 339

Figure 159. Répartition de l’établissement humain avec un seuil de 1 000 000 habitants 340

Figure 160. Loi rang – taille à l’échelle du monde avec un seuil de 1 000 000 habitants 341

Figure 161. Paramètres de l’exposant de Pareto 341

Figure 162. Estimations des lois possibles pour la « dynamique d’échelle » avec un exposant de Pareto 341

Figure 163. Dimension fractale globale de la répartition de l’établissement humain avec un seuil de 1 000 000 habitants 342

Figure 164. Dimension fractale locale de la répartition de l’établissement humain avec un seuil de 1 000 00 habitants 342

Figure 165. Dimension fractale globale du continent eurasiatique 344

Figure 166. Dimensions fractales locales du continent eurasiatique 344

Figure 167. Loi rang – taille sur la répartition de l’établissement humain à l’échelle du continent eurasiatique 345

Figure 168. Paramètres de l’exposant de Pareto 345

Figure 169. Estimations des lois possibles pour la « dynamique d’échelle » avec un exposant de Pareto 345

Figure 170. Dimension fractale globale du continent américain 346

Figure 171. Dimensions fractales locales du continent américain 346

Figure 172. Loi rang – taille sur la répartition de l’établissement humain à l’échelle du continent américain 347

Figure 173. Paramètres de l’exposant de Pareto 347

Figure 174. Estimations des lois possibles pour la « dynamique d’échelle » avec un exposant de Pareto 347

Figure 175. Dimension fractale globale du continent africain 348

Figure 176. Dimensions fractales locales du continent africain 348

Figure 177. Loi rang – taille sur la répartition de l’établissement humain à l’échelle du continent africain 349

Figure 178. Paramètres de l’exposant de Pareto 349

Figure 179. Estimations des lois possibles pour la « dynamique d’échelle » avec un exposant de Pareto 349

Figure 180. Dimension fractale globale du continent océanien 350

Figure 181. Dimensions fractales locales du continent océanien 351

Figure 182. Loi rang – taille sur la répartition de l’établissement humain à l’échelle du continent océanien 351

Figure 183. Paramètres de l’exposant de Pareto 351

Figure 184. Représentation graphique de la variation de l’exposant de Pareto en fonction de la classe statistique et estimations des
lois possibles pour la « dynamique d’échelle » avec un exposant de Pareto

352

Figure 185. Estimation des dimensions fractales territoriales à l’échelle étatique 354 à 358

396   



Figure 186. Statistique des dimensions fractales territoriales centrées et réduites 359

Figure 187. Dimension fractale territoriale moyenne en fonction des continents 359

Chapitre 18.

Figure 188. Tableau résumant les données utilisées dans cette thèse en termes d’information 365

Figure 189. Critique externe des données utilisées dans la thèse 366

Figure 190. Critique interne des données utilisées dans la thèse 367

Figure 191. Système de connaissance de l’objet géographique 368

Figure 192. Tableau résumant la combinaison entre mouvement et échelles vs. géographie structurale et géographie dynamique 371

Figure 193. Tableau synthétisant ce que pourrait être la science « géographie » 373

  397



398   



Table des matières

Remerciements 1

Dédicace 3

Résumé 5

Chapitre 1. Introduction générale 7

1.1. Objectif  1. Un lien entre la morphologie et la relativité d’échelle 10

1.1.1. Mesure de caractéristiques morphologiques 10

1.1.2. Place de la thèse dans les théories de la morphogenèse 10

1.2. Objectif  2. Un cadre multi-scalaire théorique général en géographie 12

1.3. Objectif  3. Une démarche géographique articulant temps, espace et échelles 15

Partie 1. Échelles, limites et modèles : la forme en géographie 19

Chapitre 2. Échelles en géographie 21

2.1. Échelle, résolution et niveau 21

2.1.1. L’échelle en géographie 22

2.1.2. Échelles et géométrie fractale 24

2.2. Multi-échelle, multi-résolution et multi-niveau 25

2.2.1. L’approche multi-scalaire 25

2.2.2. L’approche multi-résolution 25

2.2.3. L’approche multi-niveau 25

2.3. Effet d’échelle et effet de maillage 26

  399



Chapitre 3. Limites et discontinuités en géographie 27

3.1. L’approche classique : la théorie des discontinuités de Roger Brunet 28

3.1.1. Le concept de discontinuité en géographie 28

3.1.2. Les dix-sept points de la théorie de Roger Brunet H1968L 29

3.2. L’approche par la modélisation 30

3.2.1. Définition d’un modèle 31
3.2.1.1. Le modèle discursif 32
3.2.1.2. Le modèle graphique 32

3.2.1.3. Le modèle analogique 40

3.2.1.4. Le modèle mathématique 40

3.2.2. La modélisation mathématique 40

3.2.2.1. Étapes préliminaires à la modélisation mathématique 41

3.2.2.2. Typologie des modèles 41

3.2.2.3. Processus de la modélisation mathématique 42

3.2.2.4. La simulation 43
3.2.2.5. La théorisation 43

3.2.3. La modélisation mathématique est-elle possible en géographie ? 43

3.3. L’approche relativiste 44

3.3.1. La nature de l’espace géographique 44

3.3.1.1. Homogène et isotrope 44

3.3.1.2. Hétérogène et anisotrope 44

3.3.1.3. Continu ou discontinu 44
3.3.1.4. Synthèse : l’émergence des limites 45

3.3.2. La position relativiste 46

3.3.2.1. Principe de relativité 46

3.3.2.2. Objet ou espace géographique ? 48

3.3.2.3. Espace géographique fractal 49

3.3.3. Les formes optimales 49

3.3.3.1. Définition de l’optimisation 49

3.3.3.2. Optimisation en géographie 50

3.3.3.3. Échelle comme condition d’optimalité 51

400   



Chapitre 4. Structures fractales en géographie 53

4.1. Position du problème 53

4.2. Les fractales et la relativité d’échelle 55
4.2.1. La dépendance d’échelle 55

4.2.2. L’invariance d’échelle – L’approche empirique 55

4.2.2.1. Dimension topologique et dimension fractale 56

4.2.2.2. La dimension fractale non auto-similaire 58
4.2.3. Évaluer une dimension fractale 61

4.2.3.1. Dimension par comptage de boîtes carrées 61

4.2.3.2. Dimension par comptage de boîtes hexagonales 63

4.2.3.3. Grilles et densités locales 64
4.2.3.4. Dimension fractale par comptage de boîtes circulaires 64

4.2.3.5. Dimension radiale 65
4.2.4. De l’invariance d’échelle aux lois d’échelle généralisées – L’approche analytique 65

4.2.4.1. Fonction scalante 65
4.2.4.2. Opérateur différentiel de dilatation 66

4.2.4.3. L’invariance d’échelle démontrée analytiquement 66

4.2.4.4. L’apparition spontanée d’une zone de transition fractal – non fractal 66

4.2.5. La dépendance d’échelle et la construction de lois d’échelle 67

4.2.6. Les multifractales 68
4.2.7. La correction log-périodique 68

4.2.7.1. La version de Didier Sornette H1997L 68

4.2.7.2. La version de Laurent Nottale H1997L 69

4.2.8. L’idée de « dynamique d’échelles » 70

4.2.9. Les échelles de coupure 70

4.3. Retour sur la nature de l’espace géographique 71

Partie 2. Morphométrie en géographie 73

Chapitre 5. L’analyse morphologique 75

5.1. La définition de l’analyse morphologique 75

5.1.1. Morphologie en géographie 75

5.1.2. Morphométrie en géographie 76

5.2. L’analyse temporelle et spatiale des formes 76

5.2.1. La stabilité et la stationnarité des formes 76
5.2.2. L’instabilité et la non-stationnarité des formes 77

5.3. L’analyse morphologique et les échelles 78

  401



Chapitre 6. L’analyse morphologique du réseau du bassin versant des Gardons 79

6.1. Présentation des données 79
6.1.1. Critiques de la base CARTHAGE 80

6.1.2. Extraction des données sur Mathematica©Wolfram 80

6.2. Cartographie 80

6.3. Données générales sur les arborescences 81

6.3.1. Définition d’une arborescence 82
6.3.2. Construire une arborescence 82
6.3.3. Arborescence et base de numération 83

6.3.3.1. Le cas d’un double embranchement Hbase 2L 84

6.3.3.2. Le cas d’un triple embranchement Hbase 3L 85

6.3.4. Arbre et log-périodicité 86

6.3.4.1. Relations entre la longueur des branches et le niveau 86

6.3.4.2. Étude de la longueur d’un chemin – Longueur critique 86

6.3.4.3. Longueur totale d’une arborescence et nombre de branches 87

6.3.5. Arbre et fractalité 88
6.4. Caractéristiques fractales et non fractales de l’arborescence d’un réseau hydrographique 88

6.4.1. La « loi » de Léonard de Vinci 89
6.4.2. La loi de Cecil Murray 90

6.4.3. Les méthodes de mise en arborescence du réseau 90
6.4.3.1. Le calcul d’une dimension fractale par comptage de boîtes carrées du réseau 90

6.4.3.2. La méthode hortonienne 92
6.4.3.3. La classification hiérarchique ascendante des confluences HC.H.A.C.L 96

Chapitre 7. L’analyse morphologique des images Landsat des principales villes du monde 111

7.1. Extraction des données 112
7.1.1. Les satellites Landsat 112
7.1.2. Les couleurs de l’urbain 112
7.1.3. L’extraction de la tache urbaine 112
7.1.4. Les limites de l’extraction 114

7.2. Analyse fractale des données 115

7.2.1. Les résultats 115
7.2.2. La critique des données extraites 129

7.3. Interprétations 130

7.3.1. Dimension fractale et localisation des taches 130
7.3.2. Dimension fractale et population urbaine 131

7.3.3. Dimension fractale et surface relative 132

402   



Chapitre 8. L’analyse morphologique d’images à résolution variable de la ville d’Avignon 135

8.1. Présentation des données 135
8.2. Étude fractale des données 136

8.2.1. L’état de la question 137

8.2.2. L’analyse multi-résolution de la ville d’Avignon 137

8.2.2.1. Traitement de l’image 1 137

8.2.2.2. Traitement des images 2 à 6 138

8.3. Interprétation des résultats obtenus 140

Chapitre 9. Morphologie de l’objet « ville » défini par ses éléments bâtis 145

9.1. L’organisation multi-échelle des agglomérations 147

9.1.1. Les « vides » 148
9.1.2. Les « pleins » 149

9.1.3. L’articulation des vides et des pleins 149

9.2. Le poids de l’histoire Hhypothèse 1L 153

9.3. Le rôle de l’interaction entre le réseau inter-urbain et le réseau intra-urbain Hhypothèse 2L 154

Partie 3. Morphométrie et analyse spatio-temporelle en géographie 157

Étude du cas de la répartition des châteaux

dans l’espace géohistorique du nord de la France HPicardie et ArtoisL

Chapitre 10. Présentation de l’analyse de la répartition des châteaux en Picardie historique 159

10.1. Les mottes et les châteaux : éléments de définition 160
10.1.1. La motte castrale 160

10.1.1.1. La motte, objet historique 161

10.1.1.2. L’archéologie et les mottes 162

10.1.1.3. La motte, une forme spatiale 163

10.1.2. Les châteaux 163
10.2. Les données 164

10.2.1. Les sources 164
10.2.2. La nature des données 164

10.2.2.1. La localisation spatiale 165

10.2.2.2. La localisation temporelle 165

10.2.3. La constitution de la base de données « Catiau » 166

  403



Chapitre 11. Géohistoire du nord de la France de la fin du Haut Moyen Âge à nos jours 169

11.1. Géohistoire ou géographie historique 169

11.2. Géohistoire du Nord de la France, approche multi-scalaire 170

11.2.1. Le Regnum francorum 170

11.2.2. L’Empire d’Occident 171

11.2.3. L’enchâtellement et le début de construction du royaume de France HIXe – XIe sièclesL 174

11.2.4. De la Francia Occidentalis à la France HXIe – XIIIe sièclesL 175

11.2.5. Le Royaume de France HXIVe – XVe sièclesL 179

11.2.6. Le Royaume de France HXVIe – XVIIe sièclesL 183

11.2.7. Du Royaume de France à la France républicaine HXVIIIe siècle à nos joursL 185

11.2.8. Limites et frontières en géohistoire 186

11.2.8.1. La limite entre la Francia Occidentalis et la Lotharingie 187

11.2.8.2. Les subdivisions administratives 189
11.2.8.3. Note sur le trait de côte 189

11.3. Choix des limites temporelles 190

Chapitre 12. La réflexion sur l’analyse spatio-temporelle à partir du cas bovois 193

12.1. Le temps et la loi de l’évolution de Laurent Nottale H2000L 193

12.1.1. L’archétype temporel de Boves 194

12.1.2. Bilan et perspectives 197

12.2. L’espace 197

12.2.1. La méthode de l’analyse radiale 197

12.2.2. Exemple de la répartition des châteaux autour de Boves 201

12.2.3. Analyse radiale moyenne de la répartition de tous les châteaux 213

Chapitre 13. L’analyse fractale généralisée 221

13.1. Nuage de points et dimension fractale 221

13.2. Le champ des rapports scalaires 223

13.3. Châteaux et centres urbains 228
13.4. Statistique des dimensions fractales locales 229

Chapitre 14. L’étude multi-échelle d’un espace-temps 233

14.1. Caractéristiques de la population statistique de référence 233

14.2. Étude diachronique multi-échelle de la répartition territoriale des châteaux 234

14.2.1. Présentation des résultats 234
14.2.2. Cartographie des résultats 237

404   



Partie 4. Étude multi-échelle de la répartition de l’établissement humain sur Terre 245

Chapitre 15. Géographie du peuplement et analyse multi-échelle 247

15.1 Géographie et populations 248

15.2 Géographie du peuplement et analyse fractale 250

Chapitre 16. Présentation de la base de données Tageo 253

16.1. Tageo, site officiel de la loi rang – taille 253

16.1.1. La nature des données 254
16.1.2. L’objectif de l’analyse et les corrections apportées à la base 254

16.1.3. Le sens des variables utilisées 254
16.1.3.1. La variable « position » 255

16.1.3.2. La variable « nombre d’habitants » 255
16.2. Lois rang – taille à l’échelle étatique 255

16.2.1. État des lieux des connaissances concernant les lois rang – taille 256

16.2.2. Présentation des résultats obtenus à partir des données Tageo 258

16.2.3. Interprétations de ces résultats 295

16.3. Les statistiques parétiennes et les lois rang – taille 295

16.3.1. Les lois parétiennes 295

16.3.2. Les distributions des lois rang – taille 296

Chapitre 17. Structure multi-échelle de la répartition de la population 329

17.1. À l’échelle du monde 329

17.1.1. Données brutes 329
17.1.1.1. Analyse  fractale  globale  de  la  répartition  de  l’établissement  humain  à

l’échelle planétaire

330

17.1.1.2. Analyse  fractale  locale  de  la  répartition  de  l’établissement  humain  à
l’échelle planétaire

331

17.1.1.3. Analyse locale du nombre d’habitants à l’échelle planétaire 332

17.1.1.4. Loi rang – taille et distribution parétienne 333

17.1.2. Données avec un filtre de population à 144 300 habitants 333

17.1.2.1. Loi rang – taille et distribution parétienne 333

17.1.2.2. Analyse  fractale  de  la  répartition  de  l’établissement  humain  à  un  seuil  de
144 300 habitants

336

  405



17.1.3. Données avec un filtre de population à 1 million d’habitants 340

17.1.3.1. Loi rang – taille et distribution parétienne à un seuil de 1 000 000 d’habitants 340

17.1.3.2. Analyse  fractale  de  la  répartition  de  l’établissement  humain  à  un  seuil  de
1 000 000 d’habitants

341

17.2. À l’échelle continentale 343

17.2.1. L’Eurasie 343
17.2.2. L’Amérique 345

17.2.3. L’Afrique 347

17.2.4. L’Océanie 349
17.2.5. Conclusion 352

17.3. À l’échelle étatique 353

Chapitre 18. Conclusion générale 361

18.1. Projet 1. De la nécessité de rapprocher l’information et l’échelle 363

18.1.1. L’information 364
18.1.1.1. Le contenu brut de l’information 364
18.1.1.2. La valeur de l’information 365

18.1.2. Les savoirs 368
18.1.3. La connaissance 368

18.2. Projet 2. De la nécessité de redevenir français en géographie 369

18.3. Projet 3. De l’unification de la connaissance en géographie 371

Chapitre 19. Bibliographie 375

Chapitre 20. Annexes 387

406   




